Compatibilization of poly(butylene adipate-co-terephthalate)/polylactic acid blends by gamma radiation

被引:0
|
作者
da Costa, Fernanda Andrade Tigre [1 ,2 ]
Cardoso, Elizabeth Carvalho Leite [1 ]
Dufresne, Alain [2 ]
Parra, Duclerc Fernandes [1 ]
机构
[1] Energy Res Inst, Dept Chem & Environm Nucl, IPEN CNEN SP, Cidade Univ,Ave Prof Lineu Prestes,2242-Butanta, BR-05508000 Sao Paulo, SP, Brazil
[2] Univ Grenoble Alpes, LGP2, CNRS, Grenoble INP, F-38000 Grenoble, France
关键词
PLA; PBAT; Compatibilization; Gamma radiation; TEREPHTHALATE; IRRADIATION; FILMS; OIL;
D O I
10.1007/s00289-024-05428-1
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polylactic acid (PLA) is a widely used biopolymer and is currently produced on a global scale. However, PLA has low melt strength, which limits its application. Poly(butylene adipate-co-terephthalate) (PBAT) is a fully biodegradable polymer and one of the most attractive polymers for hardening PLA. As PLA and PBAT are immiscible, they need to be compatibilized to improve the properties of the blend. In this context, the compatibilization of PLA/PBAT blends was investigated through an irradiation process. PLA was previously irradiated, at different absorbed doses, in a cobalt-60 source to assess the compatibility of its blends with PBAT. Differential scanning calorimetry showed a reduction in the glass transition, cold crystallization and melting temperatures, and a second melting peak was observed after polymer irradiation. Also, X-ray diffraction analyses revealed a slight increase in the crystalline fraction. Thermogravimetric analysis showed that as the absorbed dose increased, the thermal stability of PLA decreased. Fourier-transform infrared spectroscopy shows bands attributed to oxidized terminations of polymer chains with carbonyls attributed to the effect of irradiation exposure. For samples irradiated above 100 kGy, an increase in tensile strength and tensile modulus can be observed as the dose increases. Rheological measurements showed a decrease in the complex viscosity of irradiated PLA with increasing absorbed dose. The surface of the polymer blend with PLA irradiated with gamma rays at 150 kGy appears to be more homogeneous according to scanning electron analysis. The polymer blend with 150 kGy irradiated PLA showed improved interaction between the components.
引用
收藏
页码:14875 / 14902
页数:28
相关论文
共 50 条
  • [11] Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends
    Marinho, Vithoria A. D.
    Pereira, Camila A. B.
    Vitorino, Maria B. C.
    Silva, Aline S.
    Carvalho, Laura H.
    Canedo, Eduardo L.
    POLYMER TESTING, 2017, 58 : 166 - 172
  • [12] Reinforcement of Polylactic Acid / Poly Butylene Adipate-co-Terephthalate blends by starch addition: A coupled computational and experimental study
    Caputo, Paolino
    Calandra, Pietro
    Pecchia, Alessandro
    Tirri, Bernardino
    Mercuri, Francesco
    Lo Celso, Fabrizio
    Testa, Flaviano
    Loise, Valeria
    Rossi, Cesare Oliviero
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 685
  • [13] Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Yeh, Jen-Taut
    Tsou, Chi-Hui
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    Chai, Wan-Lan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (02) : 680 - 687
  • [14] Synthesis and Characterization of Poly(butylene glycol adipate-co-terephthalate/diphenylsilanediol adipate-co-terephthalate) Copolyester
    Ge, Tiejun
    Wang, Meiyuan
    He, Xiaofeng
    Yu, Yang
    Liu, Xiaofeng
    Wen, Bo
    Liu, Peihan
    POLYMERS, 2024, 16 (08)
  • [15] Preparation and Characterization of Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(butylene carbonate) Blends
    We, Xin
    Wang, Pei-xian
    Wang, Ming-liang
    Huang, Dong
    Wei, Zhong
    Song, Xiao-ling
    Wang, Gong-ying
    Wang, Zi-qing
    ACTA POLYMERICA SINICA, 2024, 55 (11): : 1597 - 1607
  • [16] Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(butylene adipate-co-terephthalate)/Poly(lactic acid)
    Nunes, Edilene de C. D.
    de Souza, Alana G.
    Rosa, Derval dos S.
    MACROMOLECULAR SYMPOSIA, 2019, 383 (01)
  • [17] Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate-co-butylene terephthalate) and Poly(butylene succinate-co-butylene adipate) and Their Nanocomposites
    Coiai, Serena
    Di Lorenzo, Maria Laura
    Cinelli, Patrizia
    Righetti, Maria Cristina
    Passaglia, Elisa
    POLYMERS, 2021, 13 (15)
  • [18] Fractionated lignin as a green compatibilizer to improve the compatibility of poly (butylene adipate-co-terephthalate) /polylactic acid composites
    Liu, Qin
    Zhou, Si-Jie
    Xiong, Shao-Jun
    Yu, Shixin
    Yuan, Tong-Qi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 265
  • [19] Compatibilization strategies and analysis of morphological features of poly (butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review
    Aversa, C.
    Barletta, M.
    Cappiello, G.
    Gisario, A.
    EUROPEAN POLYMER JOURNAL, 2022, 173
  • [20] Biocomoposites of polylactic acid/poly(butylene adipate-co-terephthalate) blends loaded with quinoa husk agro-waste: thermal and mechanical properties
    Ponce, Giovanni
    Rodriguez-Llamazares, Saddys
    Rivera, Patricia Castano
    Castano, Johanna
    Oporto-Velasquez, Gloria
    Sabando, Constanza
    Ide, Walter
    Nesic, Aleksandra
    Cabrera-Barjas, Gustavo
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (08)