Influence of fiber orientation and hybrid ratios on tensile response and hybrid effect of hybrid steel fiber-reinforced Cementitious Composites

被引:2
|
作者
Wang, Ziyi [1 ,2 ]
Wang, Xiaokang [1 ]
Zhang, Zhongya [2 ,3 ]
Du, Jiang [2 ,3 ]
Zou, Yang [2 ,3 ]
Cucuzza, Raffaele [4 ]
Yang, Jun [2 ,3 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
[4] Politecn Torino, Dipartimento Ingn Strutturale Edile & Geotecn, DISEG, Corso Duca Abruzzi 24, I-10128 Turin, Italy
基金
中国国家自然科学基金;
关键词
Steel fiber reinforcement; Fiber orientation; Hybrid effect; Tensile response; Micromechanical model; BEHAVIOR; PERFORMANCE;
D O I
10.1016/j.conbuildmat.2024.138377
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study employed magnetic field induction and steel fiber hybridization methods to prepare Hybrid Aligned Steel Fiber-Reinforced Cementitious Composites (HASFRCCs). The direct tensile performance of specimens with aligned and randomly dispersed steel fibers was compared under different hybrid coarse-to-fine fiber ratios (3:1, 2:1, 1:1, 1:2, and 1:3). The fiber pullout tests were conducted to determine the bond-stress-slip relationship between steel fibers and matrix for both coarse and fine steel fibers. Based on these results, an analytical model for the tensile behavior of HASFRCC was then developed based on the composite mechanics theory and modified according to the hybrid fiber effect. The results demonstrated a significant increase in the fiber orientation coefficient eta theta theta of the HASFRCC by 21.1-26.9 % compared with the random specimens. Additionally, the tensile strength and energy absorption capacity substantially improved by 43.8-64.1 % and 58.5-71.4 %, respectively, compared to the specimens with random steel fiber. In addition, the modified model of HASFRCC quantitatively reveals the role of the two kinds of fibers in the tensile process, and the difference between the model-predicted and experimental results was less than 10%.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effects of the strain rate and fiber blending ratio on the tensile behavior of hooked steel fiber and polyvinyl alcohol fiber hybrid reinforced cementitious composites
    Son, Minjae
    Kim, Gyuyong
    Kim, Hongseop
    Lee, Sangkyu
    Nam, Jeongsoo
    Kobayashi, Koichi
    CEMENT & CONCRETE COMPOSITES, 2020, 106
  • [22] Tensile, Flexural, and Compressive Properties of Coir/Silk Fiber-reinforced Hybrid Composites
    Khanam, P. Noorunnisa
    Reddy, G. Ramachandra
    Raghu, K.
    Naidu, S. Venkata
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (14) : 2124 - 2127
  • [23] FLY ASH AND BAGASSE FIBER INFLUENCES ON MECHANICAL PROPERTIES OF GREEN HYBRID FIBER-REINFORCED CEMENTITIOUS COMPOSITES
    Tian, He
    Zhang, Y. X.
    SUSTAINABLE SOLUTIONS IN STRUCTURAL ENGINEERING AND CONSTRUCTION, 2014, : 371 - 376
  • [24] Fiber Synergy of Polyvinyl Alcohol and Steel Fibers on the Bond Behavior of a Hybrid Fiber-Reinforced Cementitious Composite
    Liu, Wenlin
    Han, Jianping
    MATERIALS, 2024, 17 (03)
  • [25] Tensile properties hybrid effect of unidirectional flax/carbon fiber hybrid reinforced polymer composites
    Wang, Anni
    Liu, Xiaogang
    Yue, Qingrui
    Xian, Guijun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 1373 - 1389
  • [26] Effect on tensile testing of hybrid fiber composites
    Xu, Jiabin
    Sun, Tao
    Chen, Daigen
    Kang, Xiaoning
    Xiao, Sa
    Zhang, Xinya
    Yang, Xiongwen
    Qian, Xinye
    Wang, Haoqing
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 : 793 - 797
  • [27] Residual impact resistance of hybrid fiber-reinforced cementitious composites after thermal degradation
    Han, Seunghyeon
    Kim, Gyuyong
    Han, Sangyoung
    Lee, Yaechan
    Eu, Hamin
    Choi, Younsung
    Nam, Jeongsoo
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472
  • [28] Experimental Research on Uniaxial Compression Constitutive Model of Hybrid Fiber-Reinforced Cementitious Composites
    Cui, Tao
    He, Haoxiang
    Yan, Weiming
    MATERIALS, 2019, 12 (15)
  • [29] Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites
    Kim, Jin-Woo
    Lee, Dong-Gi
    COMPOSITES RESEARCH, 2007, 20 (05): : 13 - 19
  • [30] The effect of carbon fiber length on the thermal expansion of fiber-reinforced particulate hybrid composites
    Lu-yan, Ju
    Xing-kai, Li
    Xue-ni, Zhang
    Zhao-yuan, Zhang
    Yao-wu, Zhang
    Kang, Ai
    POLYMER COMPOSITES, 2025, 46 (01) : 786 - 793