Early detection and stratification of colorectal cancer using plasma cell-free DNA fragmentomic profiling

被引:3
作者
Zhou, Jiyuan [1 ]
Pan, Yuanke [2 ]
Wang, Shubing [3 ]
Wang, Guoqiang [4 ]
Gu, Chengxin [1 ]
Zhu, Jinxin [2 ]
Tan, Zhenlin [1 ]
Wu, Qixian [1 ]
He, Weihuang [5 ]
Lin, Xiaohui [6 ]
Xu, Shu [7 ]
Yuan, Kehua [8 ]
Zheng, Ziwen [1 ]
Gong, Xiaoqing [1 ]
Jianghe, Chenhao [1 ]
Han, Zhoujian [1 ]
Huang, Bingding [2 ]
Ruan, Ruyun [2 ]
Feng, Mingji [5 ]
Cui, Pin [5 ]
Yang, Hui [1 ]
机构
[1] Guangzhou Med Univ, Dept Gastroenterol, Affiliated Hosp 2, 250 Changgang East St, Guangzhou 440105, Peoples R China
[2] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
[3] Hong Kong Univ Sci, Peking Univ, Shenzhen Peking Univ, Canc Inst,Med Ctr,Dept Oncol,Shenzhen Key Lab Gast, Shenzhen, Peoples R China
[4] Guangzhou Med Univ, Dept Gastrointestinal Surg, Affiliated Hosp 2, Guangzhou, Peoples R China
[5] Shenzhen Rapha Biotechnol Inc, Shenzhen 518118, Peoples R China
[6] Shenzhen Univ, Peoples Hosp Shenzhen Baoan Dist, Dept Oncol, Affiliated Hosp 2, Shenzhen, Peoples R China
[7] Univ Chinese Acad Sci, Shenzhen Hosp, Dept Oncol, Shenzhen, Guangdong, Peoples R China
[8] South Univ Sci & Technol, Yantian Hosp, Dept Oncol, Shenzhen, Guangdong, Peoples R China
关键词
Colorectal cancer; Cell-free DNA; Machine learning; Fragmentation profile;
D O I
10.1016/j.ygeno.2024.110876
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected diseasespecific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[2]   High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA [J].
Chandrananda, Dineika ;
Thorne, Natalie P. ;
Bahlo, Melanie .
BMC MEDICAL GENOMICS, 2015, 8
[3]   fastp: an ultra-fast all-in-one FASTQ preprocessor [J].
Chen, Shifu ;
Zhou, Yanqing ;
Chen, Yaru ;
Gu, Jia .
BIOINFORMATICS, 2018, 34 (17) :884-890
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   Genome-wide cell-free DNA fragmentation in patients with cancer [J].
Cristiano, Stephen ;
Leal, Alessandro ;
Phallen, Jillian ;
Fiksel, Jacob ;
Adleff, Vilmos ;
Bruhm, Daniel C. ;
Jensen, Sarah Ostrup ;
Medina, Jamie E. ;
Hruban, Carolyn ;
White, James R. ;
Palsgrove, Doreen N. ;
Niknafs, Noushin ;
Anagnostou, Valsamo ;
Forde, Patrick ;
Naidoo, Jarushka ;
Marrone, Kristen ;
Brahmer, Julie ;
Woodward, Brian D. ;
Husain, Hatim ;
van Rooijen, Karlijn L. ;
Orntoft, Mai-Britt Worm ;
Madsen, Anders Husted ;
van de Velde, Cornelis J. H. ;
Verheij, Marcel ;
Cats, Annemieke ;
Punt, Cornelis J. A. ;
Vink, Geraldine R. ;
van Grieken, Nicole C. T. ;
Koopman, Miriam ;
Fijneman, Remond J. A. ;
Johansen, Julia S. ;
Nielsen, Hans Jorgen ;
Meijer, Gerrit A. ;
Andersen, Claus Lindbjerg ;
Scharpf, Robert B. ;
Velculescu, Victor E. .
NATURE, 2019, 570 (7761) :385-+
[6]   Twelve years of SAMtools and BCFtools [J].
Danecek, Petr ;
Bonfield, James K. ;
Liddle, Jennifer ;
Marshall, John ;
Ohan, Valeriu ;
Pollard, Martin O. ;
Whitwham, Andrew ;
Keane, Thomas ;
McCarthy, Shane A. ;
Davies, Robert M. ;
Li, Heng .
GIGASCIENCE, 2021, 10 (02)
[7]   Colorectal cancer [J].
Dekker, Evelien ;
Tanis, Pieter J. ;
Vleugels, Jasper L. A. ;
Kasi, Pashtoon M. ;
Wallace, Michael B. .
LANCET, 2019, 394 (10207) :1467-1480
[8]   Inferring gene expression from cell-free DNA fragmentation profiles [J].
Esfahani, Mohammad Shahrokh ;
Hamilton, Emily G. ;
Mehrmohamadi, Mahya ;
Nabet, Barzin Y. ;
Alig, Stefan K. ;
King, Daniel A. ;
Steen, Chloe B. ;
Macaulay, Charles W. ;
Schultz, Andre ;
Nesselbush, Monica C. ;
Soo, Joanne ;
Schroers-Martin, Joseph G. ;
Chen, Binbin ;
Binkley, Michael S. ;
Stehr, Henning ;
Chabon, Jacob J. ;
Sworder, Brian J. ;
Hui, Angela B-Y ;
Frank, Matthew J. ;
Moding, Everett J. ;
Liu, Chih Long ;
Newman, Aaron M. ;
Isbell, James M. ;
Rudin, Charles M. ;
Li, Bob T. ;
Kurtz, David M. ;
Diehn, Maximilian ;
Alizadeh, Ash A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :585-+
[9]   Circulating nucleic acids (CNAs) and cancer - A survey [J].
Fleischhacker, M. ;
Schmidt, B. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2007, 1775 (01) :181-232
[10]   Detecting Liver Cancer Using Cell-Free DNA Fragmentomes [J].
Foda, Zachariah H. ;
Annapragada, Akshaya, V ;
Boyapati, Kavya ;
Bruhm, Daniel C. ;
Vulpescu, Nicholas A. ;
Medina, Jamie E. ;
Mathios, Dimitrios ;
Cristiano, Stephen ;
Niknafs, Noushin ;
Luu, Harry T. ;
Goggins, Michael G. ;
Anders, Robert A. ;
Sun, Jing ;
Meta, Shruti H. ;
Thomas, David L. ;
Kirk, Gregory D. ;
Adleff, Vilmos ;
Phallen, Jillian ;
Scharpf, Robert B. ;
Kim, Amy K. ;
Velculescu, Victor E. .
CANCER DISCOVERY, 2023, 13 (03) :616-631