Self-Supervised Learning for Spatial-Domain Light-Field Super-Resolution Imaging

被引:1
作者
Liang Dan [1 ]
Zhang Haimiao [1 ]
Qiu Jun [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100101, Peoples R China
关键词
light field; super-resolution; self-supervised learning; deep learning;
D O I
10.3788/LOP231188
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a self-supervised learning-based method for the super-resolution imaging of spatial-domain resolution-limited light-field images. Using deep learning self-encoding, a super-resolution reconstruction of the spatial-domain is performed simultaneously for all light field sub-aperture images. A hybrid loss function based on multi-scale feature structure and total variation regularization is designed to constrain the similarity of the model output image to the original low-resolution image. Numerical experiments show that the newly proposed method has a suppressive effect on noise, and the resultant average super-resolutions for different light field imaging datasets exceed those of the supervised learning-based method for light field spatial domain images.
引用
收藏
页数:13
相关论文
共 44 条
[1]  
Ba J, 2014, ACS SYM SER
[2]   Light Field Super-Resolution: A Benchmark [J].
Cheng, Zhen ;
Xiong, Zhiwei ;
Chen, Chang ;
Liu, Dong .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :1804-1813
[3]  
DUCHON CE, 1979, J APPL METEOROL, V18, P1016, DOI 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO
[4]  
2
[5]   Pixel Transposed Convolutional Networks [J].
Gao, Hongyang ;
Yuan, Hao ;
Wang, Zhengyang ;
Ji, Shuiwang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) :1218-1227
[6]   Super-Resolution Reconstruction of Light Field Images via Sparse Representation [J].
Ge Peng ;
You Yaotang .
LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
[7]  
Glorot X., 2011, P MACHINE LEARNING R, V15, P315
[8]   A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields [J].
Honauer, Katrin ;
Johannsen, Ole ;
Kondermann, Daniel ;
Goldluecke, Bastian .
COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 :19-34
[9]   Scope of validity of PSNR in image/video quality assessment [J].
Huynh-Thu, Q. ;
Ghanbari, M. .
ELECTRONICS LETTERS, 2008, 44 (13) :800-U35
[10]  
Ioffe S, 2015, Arxiv, DOI arXiv:1502.03167