A Systematic Review on the Effectiveness of Machine Learning in the Detection of Atrial Fibrillation

被引:0
作者
Wuraola, Abdulraheem Lubabat [1 ]
Al-dwa, Baraah [1 ]
Shchekochikhin, Dmitry [1 ]
Gognieva, Daria [1 ]
Chomakhidze, Petr [1 ]
Kuznetsova, Natalia [1 ]
Kopylov, Philipp [1 ]
Bestavashvilli, Afina A. [1 ]
机构
[1] Sechenov Univ, IM Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personaliz, Moscow 119991, Russia
关键词
Atrial fibrillation; ECG; artificial intelligence; machine learning; arrhythmia; neural networks; PREVALENCE; RISK; PREDICTION; ABLATION; FUTURE; STROKE; SCORE;
D O I
10.2174/011573403X293703240715104503
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent endeavors have led to the exploration of Machine Learning (ML) to enhance the detection and accurate diagnosis of heart pathologies. This is due to the growing need to improve efficiency in diagnostics and hasten the process of delivering treatment. Several institutions have actively assessed the possibility of creating algorithms for advancing our understanding of atrial fibrillation (AF), a common form of sustained arrhythmia. This means that artificial intelligence is now being used to analyze electrocardiogram (ECG) data. The data is typically extracted from large patient databases and then subsequently used to train and test the algorithm with the help of neural networks. Machine learning has been used to effectively detect atrial fibrillation with more accuracy than clinical experts, and if applied to clinical practice, it will aid in early diagnosis and management of the condition and thus reduce thromboembolic complications of the disease. In this text, a review of the application of machine learning in the analysis and detection of atrial fibrillation, a comparison of the outcomes (sensitivity, specificity, and accuracy), and the framework and methods of the studies conducted have been presented.
引用
收藏
页数:11
相关论文
共 59 条
[51]   Machine learning in the detection and management of atrial fibrillation [J].
Wegner, Felix K. ;
Plagwitz, Lucas ;
Doldi, Florian ;
Ellermann, Christian ;
Willy, Kevin ;
Wolfes, Julian ;
Sandmann, Sarah ;
Varghese, Julian ;
Eckardt, Lars .
CLINICAL RESEARCH IN CARDIOLOGY, 2022, 111 (09) :1010-1017
[52]   Interventional therapy of atrial fibrillation: possibilities and limitations [J].
Willems, S. ;
Drewitz, I. ;
Steven, D. ;
Hoffmann, B. A. ;
Meinertz, T. ;
Rostock, T. .
DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2010, 135 :S48-S54
[53]   Trends in Atrial Fibrillation Incidence Rates Within an Integrated Health Care Delivery System, 2006 to 2018 [J].
Williams, Brent A. ;
Chamberlain, Alanna M. ;
Blankenship, James C. ;
Hylek, Elaine M. ;
Voyce, Stephen .
JAMA NETWORK OPEN, 2020, 3 (08)
[54]  
Wong E., 2021, HEART LUNG CIRC, V30, pS170, DOI [10.1016/j.hlc.2021.06.174, DOI 10.1016/J.HLC.2021.06.174]
[55]  
www.hopkinsmedicine, 2023, WHAT IS AFIB
[56]   A comparison of rate control and rhythm control in patients with atrial fibrillation [J].
Wyse, DG ;
Waldo, AL ;
DiMarco, JP ;
Domanski, MJ ;
Rosenberg, Y ;
Schron, EB ;
Kellen, JC ;
Greene, HL ;
Mickel, MC ;
Dalquist, JE ;
Corley, SD .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (23) :1825-1833
[57]   Prevalence and prognostic significance of device-detected subclinical atrial fibrillation in patients with heart failure and reduced ejection fraction [J].
Zakeri, Rosita ;
Morgan, John M. ;
Phillips, Patrick ;
Kitt, Sue ;
Ng, G. Andre ;
McComb, Janet M. ;
Williams, Simon ;
Wright, David J. ;
Gill, Jaswinder S. ;
Seed, Alison ;
Witte, Klaus K. ;
Cowie, Martin R. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 312 :64-70
[58]   The comparison of Kardia Mobile and Hartmann Veroval 2 in 1 in detecting first diagnosed atrial fibrillation [J].
Zaprutko, Tomasz ;
Zaprutko, Joanna ;
Sprawka, Jozefina ;
Pogodzinska, Monika ;
Michalak, Michal ;
Paczkowska, Anna ;
Kus, Krzysztof ;
Nowakowska, Elzbieta ;
Baszko, Artur .
CARDIOLOGY JOURNAL, 2023, 30 (05) :762-770
[59]   Feasibility of Atrial Fibrillation Screening With Mobile Health Technologies at Pharmacies [J].
Zaprutko, Tomasz ;
Zaprutko, Joanna ;
Baszko, Artur ;
Sawicka, Dominika ;
Szalek, Anna ;
Dymecka, Magdalena ;
Telec, Wojciech ;
Kopciuch, Dorota ;
Ratajczak, Piotr ;
Michalak, Michal ;
Rafal, Dankowski ;
Szyszka, Andrzej ;
Nowakowska, Elzbieta .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2020, 25 (02) :142-151