A Systematic Review on the Effectiveness of Machine Learning in the Detection of Atrial Fibrillation

被引:0
作者
Wuraola, Abdulraheem Lubabat [1 ]
Al-dwa, Baraah [1 ]
Shchekochikhin, Dmitry [1 ]
Gognieva, Daria [1 ]
Chomakhidze, Petr [1 ]
Kuznetsova, Natalia [1 ]
Kopylov, Philipp [1 ]
Bestavashvilli, Afina A. [1 ]
机构
[1] Sechenov Univ, IM Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personaliz, Moscow 119991, Russia
关键词
Atrial fibrillation; ECG; artificial intelligence; machine learning; arrhythmia; neural networks; PREVALENCE; RISK; PREDICTION; ABLATION; FUTURE; STROKE; SCORE;
D O I
10.2174/011573403X293703240715104503
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent endeavors have led to the exploration of Machine Learning (ML) to enhance the detection and accurate diagnosis of heart pathologies. This is due to the growing need to improve efficiency in diagnostics and hasten the process of delivering treatment. Several institutions have actively assessed the possibility of creating algorithms for advancing our understanding of atrial fibrillation (AF), a common form of sustained arrhythmia. This means that artificial intelligence is now being used to analyze electrocardiogram (ECG) data. The data is typically extracted from large patient databases and then subsequently used to train and test the algorithm with the help of neural networks. Machine learning has been used to effectively detect atrial fibrillation with more accuracy than clinical experts, and if applied to clinical practice, it will aid in early diagnosis and management of the condition and thus reduce thromboembolic complications of the disease. In this text, a review of the application of machine learning in the analysis and detection of atrial fibrillation, a comparison of the outcomes (sensitivity, specificity, and accuracy), and the framework and methods of the studies conducted have been presented.
引用
收藏
页数:11
相关论文
共 59 条
[1]  
Aliamiri Alireza, 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), P442, DOI 10.1109/BHI.2018.8333463
[2]   Prevalence of Atrial Fibrillation and Its Predictors in Nondialysis Patients with Chronic Kidney Disease [J].
Ananthapanyasut, Wanwarat ;
Napan, Sirikarn ;
Rudolph, Earl H. ;
Harindhanavudhi, Tasma ;
Ayash, Husam ;
Guglielmi, Kelly E. ;
Lerma, Edgar V. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2010, 5 (02) :173-181
[3]   Predictors of Atrial Fibrillation Development in Patients With Embolic Stroke of Undetermined Source: An Analysis of the RE-SPECT ESUS Trial [J].
Bahit, Maria Cecilia ;
Sacco, Ralph L. ;
Easton, J. Donald ;
Meyerhoff, Juliane ;
Cronin, Lisa ;
Kleine, Eva ;
Grauer, Claudia ;
Brueckmann, Martina ;
Diener, Hans-Christoph ;
Lopes, Renato D. ;
Brainin, Michael ;
Lyrer, Phillippe ;
Wachter, Rolf ;
Segura, Tomas ;
Granger, Christopher B. .
CIRCULATION, 2021, 144 (22) :1738-1746
[4]   Role of telemedicine in the management of oral anticoagulation in atrial fibrillation: a practical clinical approach [J].
Barrios, Vivencio ;
Cinza-Sanjurjo, Sergio ;
Garcia-Alegria, Javier ;
Freixa-Pamias, Roman ;
Llordachs-Marques, Frederic ;
Molina, Carlos A. ;
Santamaria, Amparo ;
Vivas, David ;
Suarez Fernandez, Carmen .
FUTURE CARDIOLOGY, 2022, 18 (09) :743-754
[5]   Long-term risk of adverse outcomes according to atrial fibrillation type [J].
Blum, Steffen ;
Aeschbacher, Stefanie ;
Coslovsky, Michael ;
Meyre, Pascal B. ;
Reddiess, Philipp ;
Ammann, Peter ;
Erne, Paul ;
Moschovitis, Giorgio ;
Di Valentino, Marcello ;
Shah, Dipen ;
Schlaepfer, Juerg ;
Mueller, Rahel ;
Beer, Juerg H. ;
Kobza, Richard ;
Bonati, Leo H. ;
Moutzouri, Elisavet ;
Rodondi, Nicolas ;
Meyer-Zuern, Christine ;
Kuehne, Michael ;
Sticherling, Christian ;
Osswald, Stefan ;
Conen, David .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]   Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks [J].
Bollepalli, Sandeep Chandra ;
Sevakula, Rahul K. ;
Au-Yeung, Wan-Tai M. ;
Kassab, Mohamad B. ;
Merchant, Faisal M. ;
Bazoukis, George ;
Boyer, Richard ;
Isselbacher, Eric M. ;
Armoundas, Antonis A. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23)
[7]   Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation [J].
Budzianowski, Jan ;
Kaczmarek-Majer, Katarzyna ;
Rzezniczak, Janusz ;
Slomczynski, Marek ;
Wichrowski, Filip ;
Hiczkiewicz, Dariusz ;
Musielak, Bogdan ;
Grydz, Lukasz ;
Hiczkiewicz, Jaroslaw ;
Burchardt, Pawel .
SCIENTIFIC REPORTS, 2023, 13 (01)
[8]   Worldwide Epidemiology of Atrial Fibrillation A Global Burden of Disease 2010 Study [J].
Chugh, Sumeet S. ;
Havmoeller, Rasmus ;
Narayanan, Kumar ;
Singh, David ;
Rienstra, Michiel ;
Benjamin, Emelia J. ;
Gillum, Richard F. ;
Kim, Young-Hoon ;
McAnulty, John H. ;
Zheng, Zhi-Jie ;
Forouzanfar, Mohammad H. ;
Naghavi, Mohsen ;
Mensah, George A. ;
Ezzati, Majid ;
Murray, Christopher J. L. .
CIRCULATION, 2014, 129 (08) :837-847
[9]   Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis [J].
Cheuk To Chung ;
Sharen Lee ;
Emma King ;
Tong Liu ;
Antonis A. Armoundas ;
George Bazoukis ;
Gary Tse .
International Journal of Arrhythmia, 23 (1)
[10]   Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review [J].
de Hond, Anne A. H. ;
Leeuwenberg, Artuur M. ;
Hooft, Lotty ;
Kant, Ilse M. J. ;
Nijman, Steven W. J. ;
van Os, Hendrikus J. A. ;
Aardoom, Jiska J. ;
Debray, Thomas P. A. ;
Schuit, Ewoud ;
van Smeden, Maarten ;
Reitsma, Johannes B. ;
Steyerberg, Ewout W. ;
Chavannes, Niels H. ;
Moons, Karel G. M. .
NPJ DIGITAL MEDICINE, 2022, 5 (01)