Data-driven sparse modeling of oscillations in plasma space propulsion

被引:2
作者
Bayon-Bujan, Borja [1 ]
Merino, Mario [1 ]
机构
[1] Univ Carlos III Madrid, Dept Aerosp Engn, Leganes, Spain
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
基金
欧洲研究理事会;
关键词
Hall effect thrusters; sparse regression; Pareto front analysis; equation discovery; dominant balance physics; constraints; data-driven modeling; PARAMETER-ESTIMATION; EQUATIONS;
D O I
10.1088/2632-2153/ad6d29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm to obtain data-driven models of oscillatory phenomena in plasma space propulsion systems is presented, based on sparse regression (SINDy) and Pareto front analysis. The algorithm can incorporate physical constraints, use data bootstrapping for additional robustness, and fine-tuning to different metrics. Standard, weak and integral SINDy formulations are discussed and compared. The scheme is benchmarked for the case of breathing-mode oscillations in Hall effect thrusters, using particle-in-cell/fluid simulation data. Models of varying complexity are obtained for the average plasma properties, and shown to have a clear physical interpretability and agreement with existing 0D models in the literature. Lastly, the algorithm applied is also shown to enable the identification of physical subdomains with qualitatively different plasma dynamics, providing valuable information for more advanced modeling approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Data-driven approaches to digital human modeling
    Magnenat-Thalmann, N
    Seo, H
    2ND INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2004, : 380 - 387
  • [22] Data-driven modeling of heterogeneous viscoelastic biofilms
    Li, Mengfei
    Matous, Karel
    Nerenberg, Robert
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (05) : 1301 - 1313
  • [23] Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method
    Hou, Dehao
    Ma, Wenjun
    Hu, Lingyan
    Huang, Yushui
    Yu, Yunjun
    Wan, Xiaofeng
    Wu, Xiaolong
    Li, Xi
    ATMOSPHERE, 2023, 14 (09)
  • [24] Data-Driven Elastic Models for Cloth: Modeling and Measurement
    Wang, Huamin
    O'Brien, James F.
    Ramamoorthi, Ravi
    ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (04):
  • [25] Physically informed data-driven modeling of active nematics
    Golden, Matthew
    Grigoriev, Roman O.
    Nambisan, Jyothishraj
    Fernandez-Nieves, Alberto
    SCIENCE ADVANCES, 2023, 9 (27)
  • [26] Data-Driven Modeling of Partially Observed Biological Systems
    Su, Wei-Hung
    Chou, Ching-Shan
    Xiu, Dongbin
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (01) : 739 - 754
  • [27] Observational data-driven modeling and optimization of manufacturing processes
    Sadati, Najibesadat
    Chinnam, Ratna Babu
    Nezhad, Milad Zafar
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 : 456 - 464
  • [28] Maximum Likelihood Estimation in Data-Driven Modeling and Control
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S. S.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 317 - 328
  • [29] Advancing data-driven process modeling in metal forming
    Liewald, Mathias
    Vogel-Heuser, Birgit
    Bergs, Thomas
    Huber, Marco
    Kroeger, Peer
    AT-AUTOMATISIERUNGSTECHNIK, 2025, 73 (03)
  • [30] Data-Driven Modeling Methods and Techniques for Pharmaceutical Processes
    Dong, Yachao
    Yang, Ting
    Xing, Yafeng
    Du, Jian
    Meng, Qingwei
    PROCESSES, 2023, 11 (07)