Data-driven sparse modeling of oscillations in plasma space propulsion

被引:2
作者
Bayon-Bujan, Borja [1 ]
Merino, Mario [1 ]
机构
[1] Univ Carlos III Madrid, Dept Aerosp Engn, Leganes, Spain
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
基金
欧洲研究理事会;
关键词
Hall effect thrusters; sparse regression; Pareto front analysis; equation discovery; dominant balance physics; constraints; data-driven modeling; PARAMETER-ESTIMATION; EQUATIONS;
D O I
10.1088/2632-2153/ad6d29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm to obtain data-driven models of oscillatory phenomena in plasma space propulsion systems is presented, based on sparse regression (SINDy) and Pareto front analysis. The algorithm can incorporate physical constraints, use data bootstrapping for additional robustness, and fine-tuning to different metrics. Standard, weak and integral SINDy formulations are discussed and compared. The scheme is benchmarked for the case of breathing-mode oscillations in Hall effect thrusters, using particle-in-cell/fluid simulation data. Models of varying complexity are obtained for the average plasma properties, and shown to have a clear physical interpretability and agreement with existing 0D models in the literature. Lastly, the algorithm applied is also shown to enable the identification of physical subdomains with qualitatively different plasma dynamics, providing valuable information for more advanced modeling approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data-Driven Human Modeling by Sparse Representation
    Wu, Yiu-Bun
    Liu, Bin
    Liu, Xiuping
    Wang, Charlie C. L.
    COMPUTER-AIDED DESIGN, 2020, 128
  • [2] Data-driven Modeling of Nonlinear Joints in Space Structures
    Zhang, Yonglei
    Wang, Xiaoyu
    Li, Xinyuan
    Wen, Hao
    Xu, Shidong
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5549 - 5553
  • [3] Data-Driven Modeling of Microgrid Transient Dynamics Through Modularized Sparse Identification
    Nandakumar, Apoorva
    Li, Yan
    Zheng, Honghao
    Zhao, Junhui
    Zhao, Dongbo
    Zhang, Yichen
    Hong, Tianqi
    Chen, Bo
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (01) : 109 - 122
  • [4] Cooperative data-driven modeling
    Dekhovich, Aleksandr
    Turan, O. Taylan
    Yi, Jiaxiang
    Bessa, Miguel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [5] Sparse Identification for Data-Driven Dynamics and Impedance Modeling of Power Converters in DC Microgrids
    Hosseinipour, Ali
    Khazaei, Javad
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, 2024, 5 (02): : 720 - 732
  • [6] A new data-driven modeling method for fermentation processes
    Yang, Qiangda
    Gao, Hongbo
    Zhang, Weijun
    Chi, Zhongyuan
    Yi, Zhi
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 152 : 88 - 96
  • [7] Evolutionary and Sparse Regression Approach for Data-Driven Modelling of an Overhead Crane Dynamics
    Kusznir, Tom
    Smoczek, Jaroslaw
    Karwat, Boleslaw
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (04) : 282 - 295
  • [8] Sparse regression for data-driven deterrence functions in gravity models
    Javier Rubio-Herrero
    Jesús Muñuzuri
    Annals of Operations Research, 2023, 323 : 153 - 174
  • [9] Data-driven sparse discovery of hysteresis models for piezoelectric actuators
    Chandra, Abhishek
    Curti, Mitrofan
    Tiels, Koen
    Lomonova, Elena A.
    Tartakovsky, Daniel M.
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [10] Evolutionary sparse data-driven discovery of multibody system dynamics
    Ehsan Askari
    Guillaume Crevecoeur
    Multibody System Dynamics, 2023, 58 : 197 - 226