Utilization of Waste Material for Stabilization of Lateritic Soil

被引:0
|
作者
Chaiyaput, Salisa [1 ]
Ayawanna, Jiratchaya [2 ]
Manandhar, Suman [3 ]
Sae-Ueng, Songklod [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Bangkok 10520, Thailand
[2] Suranaree Univ Technol, Sch Ceram Engn, Inst Engn, Nakhon Ratchasima 30000, Thailand
[3] Kyushu Univ, Dept Civil Engn, Fukuoka 8190395, Japan
来源
SUSTAINABLE CONSTRUCTION RESOURCES IN GEOTECHNICAL ENGINEERING, CREST 2023 | 2024年 / 448卷
关键词
Asphalt dust; Electric arc furnace slag; Ladle furnace slag; Soil stabilization; LADLE FURNACE SLAG;
D O I
10.1007/978-981-99-9227-0_33
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The waste materials from the manufacturing process were employed for the purpose of enhancing the strength of lateritic soil grade E, which exhibited the least suitable mechanical properties. The present study focused on the investigation of waste materials from the steel manufacturing process, namely electric arc furnace (EAF) slag and ladle furnace (LF) slag, as well as waste material from asphalt concrete plants, specifically asphalt waste dust (AWD). These waste materials were examined in relation to their potential utilization in combination with lateritic soil. The mixing ratio employed in this investigation was 10% by weight (wt%). A mixture of 5 wt% ordinary Portland cement was mixed with 90 wt% lateritic soil and 10 wt% asphalt waste dust to enhance the efficiency of lateritic soil stabilization. The efficiency of waste materials was evaluated by the California bearing ratio (CBR) test. The integration of EAF slag and LF slag, byproducts of the steel manufacturing process, significantly improved the CBR more than 5 times and 7 times, respectively, for EAF and LF mixes compared to natural lateritic soil. Furthermore, the CBR of lateritic soil blended with asphalt waste dust and Portland cement exhibited approximately 20 times higher than that of natural lateritic soil and cement-stabilized lateritic soil.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
  • [21] EXPERIMENTAL STUDY ON PLASTIC WASTE APPLICATION FOR SOIL STABILIZATION
    Erdag, Ahmet
    Kardogan, Pinar Sezin Ozturk
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2022, 21 (09): : 1483 - 1491
  • [22] Integration of Organic Waste for Soil Stabilization through MICP
    Golovkina, Darya A.
    Zhurishkina, Elena V.
    Filippova, Arina D.
    Baranchikov, Alexander E.
    Lapina, Irina M.
    Kulminskaya, Anna A.
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [23] Stabilization of expansive soil with agricultural waste additives: a review
    Gidebo, Frehaileab Admasu
    Yasuhara, Hideaki
    Kinoshita, Naoki
    INTERNATIONAL JOURNAL OF GEO-ENGINEERING, 2023, 14 (01)
  • [24] Stabilization of expansive soil with agricultural waste additives: a review
    Frehaileab Admasu Gidebo
    Hideaki Yasuhara
    Naoki Kinoshita
    International Journal of Geo-Engineering, 14
  • [25] Utilization of coffee husk ash for soil stabilization: A systematic review
    Munirwan, Reza Pahlevi
    Taib, Aizat Mohd
    Taha, Mohd Raihan
    Abd Rahman, Norinah
    Munirwansyah, Munirwansyah
    PHYSICS AND CHEMISTRY OF THE EARTH, 2022, 128
  • [26] Utilization of Sustainable Materials for Soil Stabilization: State-of-the-Art
    Jayanthi, P. N. V.
    Singh, D. N.
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2016, 5 (01): : 46 - 79
  • [27] Comparative Study on Soil Stabilization with Polyethylene Waste Materials and Binders
    Ilies, Nicoleta-Maria
    Circu, Alexandru-Petru
    Nagy, Andor-Csongor
    Ciubotaru, Vlad-Costel
    Kisfaludi-Bak, Zsombor
    10TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING, INTER-ENG 2016, 2017, 181 : 444 - 451
  • [28] EFFECTS OF ALKALI-ACTIVATED WASTE BINDER IN SOIL STABILIZATION
    Teing, Tan Teing
    Huat, Bujang B. K.
    Shukla, Sanjay Kumar
    Anggraini, Vivi
    Nahazanan, Haslinda
    INTERNATIONAL JOURNAL OF GEOMATE, 2019, 17 (59): : 82 - 89
  • [29] Soil stabilization using E-waste: A retrospective analysis
    Kumar, J. Kiran
    Kumar, V. Praveen
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 691 - 693
  • [30] The use of ladle furnace slag in soil stabilization
    Manso, Juan M.
    Ortega-Lopez, Vanesa
    Polanco, Juan A.
    Setien, Jesus
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 126 - 134