General Relations between Stress Fluctuations and Viscoelasticity in Amorphous Polymer and Glass-Forming Systems

被引:1
作者
Semenov, Alexander [1 ]
Baschnagel, Jorg [1 ]
机构
[1] Univ Strasbourg, Inst Charles Sadron, CNRS, UPR 22, F-67034 Strasbourg, France
关键词
supercooled liquids; polymers; viscoelasticity; amorphous solids; TRANSITION; DYNAMICS; LIQUIDS; MELTS;
D O I
10.3390/polym16162336
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled glass-forming fluids. It was recently established that liquids with long terminal relaxation times are characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations contributing to the dynamically heterogeneous nature of such systems. Recent studies show that stress correlations and relaxation elastic moduli are intimately related in isotropic viscoelastic systems. However, the origin of these relations (involving spatially resolved material relaxation functions) is non-trivial: some relations are based on the fluctuation-dissipation theorem (FDT), while others involve approximations. Generalizing our recent results on 2D systems, we here rigorously derive three exact FDT relations (already established in our recent investigations and, partially, in classical studies) between spatio-temporal stress correlations and generalized relaxation moduli, and a couple of new exact relations. We also derive several new approximate relations valid in the hydrodynamic regime, taking into account the effects of thermal conductivity and composition fluctuations for arbitrary space dimension. One approximate relation was heuristically obtained in our previous studies and verified using our extended simulation data on two-dimensional (2D) glass-forming systems. As a result, we provide the means to obtain, in any spatial dimension, all stress-correlation functions in terms of relaxation moduli and vice versa. The new approximate relations are tested using simulation data on 2D systems of polydisperse Lennard-Jones particles.
引用
收藏
页数:33
相关论文
共 66 条
[1]  
Armstrong R. C., 1987, Dynamics of Polymeric Liquids, V1
[2]  
Balucani U., 1995, Dynamics of the Liquid State
[3]   Theoretical perspective on the glass transition and amorphous materials [J].
Berthier, Ludovic ;
Biroli, Giulio .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :587-645
[4]   Simulation Study of Entanglement in Semiflexible Polymer Melts and Solutions [J].
Bobbili, Sai Vineeth ;
Milner, Scott T. .
MACROMOLECULES, 2020, 53 (10) :3861-3872
[5]   Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode Coupling Temperature [J].
Chacko, Rahul N. ;
Landes, Francois P. ;
Biroli, Giulio ;
Dauchot, Olivier ;
Liu, Andrea J. ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2021, 127 (04)
[6]   Long range stress correlations in the inherent structures of liquids at rest [J].
Chowdhury, Sadrul ;
Abraham, Sneha ;
Hudson, Toby ;
Harrowell, Peter .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (12)
[7]   Supercooled liquids and the glass transition [J].
Debenedetti, PG ;
Stillinger, FH .
NATURE, 2001, 410 (6825) :259-267
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]   The experimental realization of a two-dimensional colloidal model system [J].
Ebert, F. ;
Dillmann, P. ;
Maret, G. ;
Keim, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (08)
[10]  
Evans DJ, 2007, STATISTICAL MECHANICS OF NONEQUILIBRIUM LIQUIDS, P1