Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies

被引:0
作者
Sawano, Shinnosuke [1 ]
Kodera, Satoshi [1 ]
Setoguchi, Naoto [2 ]
Tanabe, Kengo [2 ]
Kushida, Shunichi [3 ]
Kanda, Junji [3 ]
Saji, Mike [4 ]
Nanasato, Mamoru [4 ]
Maki, Hisataka [5 ]
Fujita, Hideo [5 ]
Kato, Nahoko [6 ]
Watanabe, Hiroyuki [6 ]
Suzuki, Minami [7 ]
Takahashi, Masao [7 ]
Sawada, Naoko [8 ]
Yamasaki, Masao [8 ]
Sato, Masataka [1 ]
Katsushika, Susumu [1 ]
Shinohara, Hiroki [1 ]
Takeda, Norifumi [1 ]
Fujiu, Katsuhito [1 ,9 ]
Daimon, Masao [1 ,10 ]
Akazawa, Hiroshi [1 ]
Morita, Hiroyuki [1 ]
Komuro, Issei [1 ]
机构
[1] Univ Tokyo Hosp, Dept Cardiovasc Med, Tokyo, Japan
[2] Mitsui Mem Hosp, Div Cardiol, Tokyo, Japan
[3] Asahi Gen Hosp, Dept Cardiovasc Med, Chiba, Japan
[4] Sakakibara Heart Inst, Dept Cardiol, Tokyo, Japan
[5] Jichi Med Univ, Saitama Med Ctr, Div Cardiovasc Med, Omiya, Japan
[6] Tokyo Bay Med Ctr, Dept Cardiol, Urayasu, Japan
[7] JR Gen Hosp, Dept Cardiol, Tokyo, Japan
[8] NTT Med Ctr Tokyo, Dept Cardiol, Tokyo, Japan
[9] Univ Tokyo, Dept Adv Cardiol, Tokyo, Japan
[10] Univ Tokyo Hosp, Dept Clin Lab, Tokyo, Japan
来源
PLOS ONE | 2024年 / 19卷 / 08期
关键词
VENTRICULAR SYSTOLIC DYSFUNCTION; ECG;
D O I
10.1371/journal.pone.0307978
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.
引用
收藏
页数:17
相关论文
共 35 条
  • [1] Abbaspourazad S., 2023, arXiv preprint arXiv:231205409
  • [2] Alayrac Jean-Baptiste, 2022, P NEURIPS NEW ORL
  • [3] Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs
    Attia, Zachi, I
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Kapa, Suraj
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
  • [4] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [5] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    [J]. NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [6] Bachmann Roman, 2022, arXiv preprint arXiv:220401678
  • [7] Chen T., 2020, INT C MACHINE LEARNI
  • [8] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [9] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [10] Dosovitskiy A., 2020, ARXIV