Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies

被引:0
|
作者
Sawano, Shinnosuke [1 ]
Kodera, Satoshi [1 ]
Setoguchi, Naoto [2 ]
Tanabe, Kengo [2 ]
Kushida, Shunichi [3 ]
Kanda, Junji [3 ]
Saji, Mike [4 ]
Nanasato, Mamoru [4 ]
Maki, Hisataka [5 ]
Fujita, Hideo [5 ]
Kato, Nahoko [6 ]
Watanabe, Hiroyuki [6 ]
Suzuki, Minami [7 ]
Takahashi, Masao [7 ]
Sawada, Naoko [8 ]
Yamasaki, Masao [8 ]
Sato, Masataka [1 ]
Katsushika, Susumu [1 ]
Shinohara, Hiroki [1 ]
Takeda, Norifumi [1 ]
Fujiu, Katsuhito [1 ,9 ]
Daimon, Masao [1 ,10 ]
Akazawa, Hiroshi [1 ]
Morita, Hiroyuki [1 ]
Komuro, Issei [1 ]
机构
[1] Univ Tokyo Hosp, Dept Cardiovasc Med, Tokyo, Japan
[2] Mitsui Mem Hosp, Div Cardiol, Tokyo, Japan
[3] Asahi Gen Hosp, Dept Cardiovasc Med, Chiba, Japan
[4] Sakakibara Heart Inst, Dept Cardiol, Tokyo, Japan
[5] Jichi Med Univ, Saitama Med Ctr, Div Cardiovasc Med, Omiya, Japan
[6] Tokyo Bay Med Ctr, Dept Cardiol, Urayasu, Japan
[7] JR Gen Hosp, Dept Cardiol, Tokyo, Japan
[8] NTT Med Ctr Tokyo, Dept Cardiol, Tokyo, Japan
[9] Univ Tokyo, Dept Adv Cardiol, Tokyo, Japan
[10] Univ Tokyo Hosp, Dept Clin Lab, Tokyo, Japan
来源
PLOS ONE | 2024年 / 19卷 / 08期
关键词
VENTRICULAR SYSTOLIC DYSFUNCTION; ECG;
D O I
10.1371/journal.pone.0307978
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electrocardiography (ECG) analysis model using limited ECG data. We pretrained Vision Transformer (ViT) models by reconstructing the masked ECG data with MAE. We fine-tuned this MAE-based ECG pretrained model on ECG-echocardiography data from The University of Tokyo Hospital (UTokyo) for the detection of left ventricular systolic dysfunction (LVSD), and then evaluated it using multi-center external validation data from seven institutions, employing the area under the receiver operating characteristic curve (AUROC) for assessment. We included 38,245 ECG-echocardiography pairs from UTokyo and 229,439 pairs from all institutions. The performances of MAE-based ECG models pretrained using ECG data from UTokyo were significantly higher than that of other Deep Neural Network models across all external validation cohorts (AUROC, 0.913-0.962 for LVSD, p < 0.001). Moreover, we also found improvements for the MAE-based ECG analysis model depending on the model capacity and the amount of training data. Additionally, the MAE-based ECG analysis model maintained high performance even on the ECG benchmark dataset (PTB-XL). Our proposed method developed high performance MAE-based ECG analysis models using limited ECG data.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An autoencoder-based self-supervised learning for multimodal sentiment analysis
    Feng, Wenjun
    Wang, Xin
    Cao, Donglin
    Lin, Dazhen
    INFORMATION SCIENCES, 2024, 675
  • [2] A Survey on Masked Autoencoder for Visual Self-supervised Learning
    Zhang, Chaoning
    Zhang, Chenshuang
    Song, Junha
    Yi, John Seon Keun
    Kweon, In So
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6805 - 6813
  • [3] Self-Supervised Learning Malware Traffic Classification Based on Masked Autoencoder
    Xu, Ke
    Zhang, Xixi
    Wang, Yu
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Sari, Hikmet
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17330 - 17340
  • [4] ProteinMAE: masked autoencoder for protein surface self-supervised learning
    Yuan, Mingzhi
    Shen, Ao
    Fu, Kexue
    Guan, Jiaming
    Ma, Yingfan
    Qiao, Qin
    Wang, Manning
    BIOINFORMATICS, 2023, 39 (12)
  • [5] Learnable Masked Tokens for Improved Transferability of Self-supervised Vision Transformers
    Hu, Hao
    Baldassarre, Federico
    Azizpour, Hossein
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 409 - 426
  • [6] GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning
    Fu, Zanhao
    Zhu, Huaiyu
    Zhao, Yisheng
    Huan, Ruohong
    Zhang, Yi
    Chen, Shuohui
    Pan, Yun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6486 - 6497
  • [7] Medical Image Classification Using Self-Supervised Learning-Based Masked Autoencoder
    Fan, Zong
    Wang, Zhimin
    Gong, Ping
    Lee, Christine U.
    Tang, Shanshan
    Zhang, Xiaohui
    Hao, Yao
    Zhang, Zhongwei
    Song, Pengfei
    Chen, Shigao
    Li, Hua
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [8] GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning
    Fu, Zanhao
    Zhu, Huaiyu
    Zhao, Yisheng
    Huan, Ruohong
    Zhang, Yi
    Chen, Shuohui
    Pan, Yun
    IEEE Journal of Biomedical and Health Informatics, 2024, 28 (11): : 6486 - 6497
  • [9] Feature Guided Masked Autoencoder for Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Hernandez, Hugo Hernandez
    Albrecht, Conrad M.
    Zhu, Xiao Xiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 321 - 336
  • [10] Autoencoder-based self-supervised hashing for cross-modal retrieval
    Li, Yifan
    Wang, Xuan
    Cui, Lei
    Zhang, Jiajia
    Huang, Chengkai
    Luo, Xuan
    Qi, Shuhan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 17257 - 17274