EdgePose: An Edge Attention Network for 6D Pose Estimation

被引:0
|
作者
Feng, Qi [1 ]
Nong, Jian [1 ]
Liang, Yanyan [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Sch Comp Sci & Engn, Macau, Peoples R China
关键词
6D pose estimation; edge attention; feature fusion; deep learning; mixed reality;
D O I
10.3390/math12172607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a 6D pose estimation method that introduces an edge attention mechanism into the bidirectional feature fusion network. Our method constructs an end-to-end network model by sharing weights between the edge detection encoder and the encoder of the RGB branch in the feature fusion network, effectively utilizing edge information and improving the accuracy and robustness of 6D pose estimation. Experimental results show that this method achieves an accuracy of nearly 100% on the LineMOD dataset, and it also achieves state-of-the-art performance on the YCB-V dataset, especially on objects with significant edge information.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [42] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [43] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [44] Orientation Keypoints for 6D Human Pose Estimation
    Fisch, Martin
    Clark, Ronald
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10145 - 10158
  • [45] 3D Point-to-Keypoint Voting Network for 6D Pose Estimation
    Hua, Weitong
    Guo, Jiaxin
    Wang, Yue
    Xiong, Rong
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 536 - 541
  • [46] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [47] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [48] FusionNetV2: Explicit Enhancement of Edge Features for 6D Object Pose Estimation
    Ye, Yuning
    Park, Hanhoon
    ELECTRONICS, 2024, 13 (18)
  • [49] Binocular vision object 6D pose estimation based on circulatory neural network
    Yang H.
    Li Z.
    Kang Z.-Y.
    Tian B.
    Dong Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2179 - 2187
  • [50] DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation
    Li, Hongyang
    Lin, Jiehong
    Jia, Kui
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 369 - 385