Joint Domain Adaptation-Based Lightweight Approach for Cross-Domain Diagnosis Compatible With Different Devices and Multimodal Sensing

被引:0
|
作者
Li, Xuan [1 ]
Chen, Qitong [1 ]
Chen, Liang [1 ]
Shen, Changqing [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215000, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Feature extraction; Convolution; Vibrations; Fault diagnosis; Computational modeling; Mathematical models; Industrial application; joint domain adaptation; lightweight model; multimodal sensing; universal fault diagnosis; FAULT-DIAGNOSIS; BALL SCREW; ATTENTION; NETWORK;
D O I
10.1109/JSEN.2024.3430100
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing fault diagnosis models are limited to specific mechanical devices and specific signal types, hindering their use in industrial applications. This study aims to address this limitation by proposing a universal method compatible with different devices and multimodal sensing, while considering its suitability under different working conditions. First, a joint distribution adaptation method based on lightweight networks (JDALNs) is proposed to reduce data distribution differences between source and target domains and avoid pattern collapse problems. Second, a lightweight network block constructed by partial convolution (PConv) and pointwise convolution (PW) is proposed to enhance the feature extraction capability, and the classification model is designed based on this block and grouped convolution. Finally, experimental evaluations are conducted on current signals of industrial robots and vibration signals of bearings, demonstrating an extremely high level of model accuracy. Remarkably, the proposed model achieves the good performance while maintaining a compact parameter size and computational effort.
引用
收藏
页码:28373 / 28382
页数:10
相关论文
共 50 条
  • [1] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [2] Multilevels Domain Alignment Adaptation-Based Transfer Fault Diagnosis Method for Different Machines
    Jun, He
    Chen, Xingda
    Chen, Zhiwen
    Liu, Shiya
    Chen, Zibin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [3] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis
    Sun, Kai
    Xu, Xinghan
    Lu, Nannan
    Xia, Huijuan
    Han, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Balanced Adaptation Regularization Based Transfer Learning for Unsupervised Cross-Domain Fault Diagnosis
    Hu, Qin
    Si, Xiaosheng
    Qin, Aisong
    Lv, Yunrong
    Liu, Mei
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12139 - 12151
  • [6] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239
  • [7] Cross-Domain Fault Diagnosis Based on Improved Multi-Scale Fuzzy Measure Entropy and Enhanced Joint Distribution Adaptation
    Qin, Aisong
    Mao, Hanling
    Sun, Kuangchi
    Huang, Zhengfeng
    Li, Xinxin
    IEEE SENSORS JOURNAL, 2022, 22 (10) : 9649 - 9664
  • [8] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [9] Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift
    Feng, Yong
    Chen, Jinglong
    He, Shuilong
    Pan, Tongyang
    Zhou, Zitong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3082 - 3096
  • [10] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207