Electrochemical H2O2 Production Modelling for an Electrochemical Bandage

被引:0
|
作者
Ozdemir, Dilara [1 ]
Picioreanu, Cristian [2 ]
Patel, Robin [3 ,4 ]
Beyenal, Haluk [1 ]
机构
[1] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA
[2] King Abdullah Univ Sci & Technol KAUST, Water Desalinat & Reuse Ctr WDRC, Biol & Environm Sci & Engn Div BESE, Thuwal, Saudi Arabia
[3] Mayo Clin, Dept Lab Med & Pathol, Div Clin Microbiol, Rochester, MN USA
[4] Mayo Clin, Dept Med, Div Infect Dis, Rochester, MN USA
基金
美国国家卫生研究院;
关键词
H2O2; COMSOL; electrochemical hydrogen peroxide production; electrochemical bandage; carbon fabric; wound healing; HYDROGEN-PEROXIDE; BIOFILM CONTROL; HYPOCHLORITE; WATER;
D O I
10.1149/1945-7111/ad5e02
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hydrogen peroxide (H2O2) is an environmentally friendly oxidizing agent used to treat wound infections. We have developed an electrochemical bandage (e-bandage), which generates H2O2 in situ and shown that it exhibites in vitro and in vivo efficacy. The electrochemical bandage comprises carbon fabric working and counter electrodes, as well as an Ag/AgCl quasi-reference electrode, separated by cotton fabric and the electrolyte is delivered by Xanthan gum with phosphate buffer saline. While the chemistry and electrochemistry of the e-bandage have been experimentally characterized, the system level description could aid in better designing these devices. Here, a model called electrochemical hydrogen peroxide production (EHPP) was used to evaluate factors influencing electrochemical generation of H2O2, including electrode potential, diffusion and reaction rates, temperature, and various geometries. EHPP model parameters estimated based on experimental results indicate that: (i) with diffusion limitations caused by changes in physical conditions (e.g., drying of hydrogel), the rate of H2O2 generation decreases, (ii) higher working electrode overpotentials increase H2O2 generation and higher counter electrode overpotentials do not affect H2O2 generation, (iii) increasing the distance between electrodes by adding more hydrogel reduces H2O2 generation, (iv) net H2O2 generation decreases similar to 12% with temperature, and (v) H2O2 production is most effective in the initial 48 h of operation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrochemical Reactors for Continuous Decentralized H2O2 Production
    Wen, Yichan
    Zhang, Ting
    Wang, Jianying
    Pan, Zhelun
    Wang, Tianfu
    Yamashita, Hiromi
    Qian, Xufang
    Zhao, Yixin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (35)
  • [2] Electrochemical Grafting of a Pyridinium-Conjugated Assembly on Graphite for H2O2 Electrochemical Production
    Ma, Rui
    Zhang, Zhengping
    Iyoda, Tomokazu
    Wang, Feng
    CHEMELECTROCHEM, 2022, 9 (15):
  • [3] ELECTROCHEMICAL PRODUCTION OF H2O2 AND O-2 AT AN ANTHRACENE H2O INTERFACE
    POPE, M
    SLOTNICK, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (11): : 1923 - 1924
  • [4] Generation of Pd-O for Promoting Electrochemical H2O2 Production
    Du, Jiawei
    Jiang, Shuaihu
    Zhang, Ruya
    Wang, Pai
    Ma, Chao
    Zhao, Ruijuan
    Cui, Chunhua
    Zhang, Yanning
    Kang, Yijin
    ACS CATALYSIS, 2023, 13 (10): : 6887 - 6892
  • [5] Machine Learning Assisted Analysis of Electrochemical H2O2 Production
    Leem, Juyoung
    Vallez, Lauren
    Gill, Thomas Mark
    Zheng, Xiaolin
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (07) : 3953 - 3959
  • [6] Bimetallic PdAu Nanoframes for Electrochemical H2O2 Production in Acids
    Zhao, Xuan
    Yang, Hao
    Xu, Jie
    Cheng, Tao
    Li, Yanguang
    ACS MATERIALS LETTERS, 2021, 3 (07): : 996 - 1002
  • [7] Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis
    Yang, Sungeun
    Verdaguer-Casadevall, Arnau
    Arnarson, Logi
    Silvio, Luca
    Colic, Viktor
    Frydendal, Rasmus
    Rossmeisl, Jan
    Chorkendorff, Ib
    Stephens, Ifan E. L.
    ACS CATALYSIS, 2018, 8 (05): : 4064 - 4081
  • [8] Hierarchically porous biochar for supercapacitor and electrochemical H2O2 production
    Gao, Miao
    Wang, Wei-Kang
    Zheng, Yu-Ming
    Zhao, Quan-Bao
    Yu, Han-Qing
    CHEMICAL ENGINEERING JOURNAL, 2020, 402
  • [9] Electrochemical behavior of H2O2 on gold
    Gerlache, M
    Senturk, Z
    Quarin, G
    Kauffmann, JM
    ELECTROANALYSIS, 1997, 9 (14) : 1088 - 1092
  • [10] Electrochemical Behavior of H2O2 on Gold
    Institut de Pharmacie, Université Libre de Bruxelles, Campus Plaine 205/06, Bvd du Triomphe, B-1050 Bruxelles, Belgium
    Electroanalysis, 14 (1088-1092):