A Machine Learning Model for Predicting In-Hospital Mortality inChinese Patients With ST-Segment Elevation MyocardialInfarction:Findings From the China Myocardial Infarction Registry

被引:2
作者
Yang, Jingang [1 ,3 ]
Li, Yingxue [2 ]
Li, Xiang [2 ]
Tao, Shuiying [1 ]
Zhang, Yuan [2 ]
Chen, Tiange [2 ]
Xie, Guotong [2 ]
Xu, Haiyan [1 ]
Gao, Xiaojin [1 ]
Yang, Yuejin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, State Key Lab Cardiovasc Dis, 167 Beilishi Rd, Beijing 100037, Peoples R China
[2] Ping Healthcare & Technol, Beijing, Peoples R China
[3] China Myocardial Infarct Registry Res Grp, Beijing, Peoples R China
关键词
ST-elevation myocardial infarction; in-hospital mortality; risk prediction; explainable machine learning; machine learning; acutemyocardial infarction; myocardial infarction; mortality; risk; predication model; china; clinical practice; validation; patientmanagement; management; DENSITY-LIPOPROTEIN CHOLESTEROL; CORONARY-ARTERY-DISEASE; SERUM POTASSIUM LEVELS; ALL-CAUSE MORTALITY; LOGISTIC-REGRESSION; TERM MORTALITY; RISK;
D O I
10.2196/50067
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Machine learning (ML) risk prediction models, although much more accurate than traditional statistical methods,are inconvenient to use in clinical practice due to their nontransparency and requirement of a large number of input variables. Objective: We aimed to develop a precise, explainable, and flexible ML model to predict the risk of in-hospital mortality inpatients with ST-segment elevation myocardial infarction (STEMI). Methods: This study recruited 18,744 patients enrolled in the 2013 China Acute Myocardial Infarction (CAMI) registry and12,018 patients from the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AcuteMyocardial Infarction Study. The Extreme Gradient Boosting (XGBoost) model was derived from 9616 patients in the CAMIregistry (2014, 89 variables) with 5-fold cross-validation and validated on both the 9125 patients in the CAMI registry (89variables) and the independent China PEACE cohort (10 variables). The Shapley Additive Explanations (SHAP) approach wasemployed to interpret the complex relationships embedded in the proposed model.Results: In the XGBoost model for predicting all-cause in-hospital mortality, the variables with the top 8 most important scoreswere age, left ventricular ejection fraction, Killip class, heart rate, creatinine, blood glucose, white blood cell count, and use ofangiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs). The area under the curve (AUC)on the CAMI validation set was 0.896 (95% CI 0.884-0.909), significantly higher than the previous models. The AUC for theGlobal Registry of Acute Coronary Events (GRACE) model was 0.809 (95% CI 0.790-0.828), and for the TIMI model, it was0.782 (95% CI 0.763-0.800). Despite the China PEACE validation set only having 10 available variables, the AUC reached 0.840(0.829-0.852), showing a substantial improvement to the GRACE (0.762, 95% CI 0.748-0.776) and TIMI (0.789, 95% CI0.776-0.803) scores. Several novel and nonlinear relationships were discovered between patients'characteristics and in-hospitalmortality, including a U-shape pattern of high-density lipoprotein cholesterol (HDL-C). Conclusions: The proposed ML risk prediction model was highly accurate in predicting in-hospital mortality. Its flexible andexplainable characteristics make the model convenient to use in clinical practice and could help guide patient management. Trial Registration: ClinicalTrials.gov NCT01874691; https://clinicaltrials.gov/study/NCT0187469
引用
收藏
页数:12
相关论文
共 40 条
[1]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[2]   2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [J].
Amsterdam, Ezra A. ;
Wenger, Nanette K. ;
Brindis, Ralph G. ;
Casey, Donald E., Jr. ;
Ganiats, Theodore G. ;
Holmes, David R., Jr. ;
Jaffe, Allan S. ;
Jneid, Hani ;
Kelly, Rosemary F. ;
Kontos, Michael C. ;
Levine, Glenn N. ;
Liebson, Philip R. ;
Mukherjee, Debabrata ;
Peterson, Eric D. ;
Sabatine, Marc S. ;
Smalling, Richard W. ;
Zieman, Susan J. ;
Anderson, Jeffrey L. ;
Halperin, Jonathan L. ;
Albert, Nancy M. ;
Bozkurt, Biykem ;
Brindis, Ralph G. ;
Curtis, Lesley H. ;
DeMets, David ;
Fleisher, Lee A. ;
Gidding, Samuel ;
Guyton, Robert A. ;
Hochman, Judith S. ;
Kovacs, Richard J. ;
Ohman, E. Magnus ;
Pressler, Susan J. ;
Sellke, Frank W. ;
Shen, Win-Kuang ;
Stevenson, William G. ;
Wijeysundera, Duminda N. ;
Yancy, Clyde W. .
CIRCULATION, 2014, 130 (25) :2354-2394
[3]  
[Anonymous], 2015, LANCET, V385, P402, DOI [10.1016/S0140-6736(14)60921-1, 10.1016/S0140-6736(14)62216-9]
[4]   Informatics in Radiology Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation [J].
Ayer, Turgay ;
Chhatwal, Jagpreet ;
Alagoz, Oguzhan ;
Kahn, Charles E., Jr. ;
Woods, Ryan W. ;
Burnside, Elizabeth S. .
RADIOGRAPHICS, 2010, 30 (01) :13-U27
[5]  
Berry W, 1985, MULTIPLE REGRESSION
[6]   High Density Lipoprotein Cholesterol and the Risk of All-Cause Mortality among US Veterans [J].
Bowe, Benjamin ;
Xie, Yan ;
Xian, Hong ;
Balasubramanian, Sumitra ;
Zayed, Mohamed A. ;
Al-Aly, Ziyad .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2016, 11 (10) :1784-1793
[7]   Association of white blood cell count with increased mortality in acute myocardial infarction and unstable angina pectoris [J].
Cannon, CP ;
McCabe, CH ;
Wilcox, RG ;
Bentley, JH ;
Braunwald, E .
AMERICAN JOURNAL OF CARDIOLOGY, 2001, 87 (05) :636-639
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]   Relation of Serum Potassium Level to Long-Term Outcomes in Patients With Acute Myocardial Infarction [J].
Choi, Joon Seok ;
Kim, Young A. ;
Kim, Ha Yeon ;
Oak, Chan Young ;
Kan, Yong Un ;
Kim, Chang Seong ;
Bae, Eun Hui ;
Ma, Seong Kwon ;
Ahn, Young Keun ;
Jeong, Myung Ho ;
Kim, Soo Wan .
AMERICAN JOURNAL OF CARDIOLOGY, 2014, 113 (08) :1285-1290
[10]   New guidelines for potassium replacement in clinical practice -: A contemporary review by the national council on potassium in clinical practice [J].
Cohn, JN ;
Kowey, PR ;
Whelton, PK ;
Prisant, LM .
ARCHIVES OF INTERNAL MEDICINE, 2000, 160 (16) :2429-2436