Refined Homology-Directed Repair Methodological Approaches of Donorguide, a Chimeric RNA: DNA tracrRNA

被引:0
作者
Gomez, Adriana Morales [1 ,4 ,5 ]
Thulung, Lucy Rai [2 ]
Daby, Camden L. [2 ]
Savage, Kaila S. [2 ]
Clark, Karl J. [3 ]
Ekker, Stephen C. [4 ,5 ]
机构
[1] Mayo Clin, Ctr Clin & Translat Sci, Rochester, MN USA
[2] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN USA
[3] Texas A&M Univ, Dept Anim Sci, College Stn, TX USA
[4] Univ Texas Austin, Dept Pediat, Dell Med Sch, Austin, TX USA
[5] Univ Texas Austin, Ctr Rare Dis, Dell Med Sch, Austin, TX USA
来源
GEN BIOTECHNOLOGY | 2024年 / 3卷 / 03期
关键词
GENOMIC DNA; BASE; EFFICIENCY; CELLS;
D O I
10.1089/genbio.2024.0016
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The use of single-stranded oligodeoxynucleotide (ssODN) along with CRISPR-Cas9-mediated double-strand breaks (DSB) is one of the most commonly deployed methods for introducing genetic alterations, but this approach has notable limitations. Recognizing this, we have developed a protocol article that provides a step-by-step process of donorguide, a covalent fusion of trans-activating CRISPR RNA (tracrRNA) and ssODN. Donorguide has the potential to enhance the introduction of specific genetic alterations (insertion, deletion, and substitution) at a DSB, improving homology-directed repair methods from zebrafish in vivo to human cells in vitro. We also explored and discuss the impact of increasing the length of donorguide homology arms in zebrafish.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 47 条
[41]   Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair [J].
Sweeney, Colin L. ;
Pavel-Dinu, Mara ;
Choi, Uimook ;
Brault, Julie ;
Liu, Taylor ;
Koontz, Sherry ;
Li, Linhong ;
Theobald, Narda ;
Lee, Janet ;
Bello, Ezekiel A. ;
Wu, Xiaolin ;
Meis, Ronald J. ;
Dahl, Gary A. ;
Porteus, Matthew H. ;
Malech, Harry L. ;
De Ravin, Suk See .
GENE THERAPY, 2021, 28 (06) :373-390
[42]   HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair [J].
Di Giorgio, Eros ;
Dalla, Emiliano ;
Tolotto, Vanessa ;
D'Este, Francesca ;
Paluvai, Harikrishnareddy ;
Ranzino, Liliana ;
Brancolini, Claudio .
NUCLEIC ACIDS RESEARCH, 2024, 52 (14) :8218-8240
[43]   Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing [J].
Paulsen, Bruna S. ;
Mandal, Pankaj K. ;
Frock, Richard L. ;
Boyraz, Baris ;
Yadav, Rachita ;
Upadhyayula, Srigokul ;
Gutierrez-Martinez, Paula ;
Ebina, Wataru ;
Fasth, Anders ;
Kirchhausen, Tomas ;
Talkowski, Michael E. ;
Agarwal, Suneet ;
Alt, Frederick W. ;
Rossi, Derrick J. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11) :878-888
[44]   Simple embryo injection of long single-stranded donor templates with theCRISPR/Cas9 system leads to homology-directed repair inXenopus tropicalisandXenopus laevis [J].
Nakayama, Takuya ;
Grainger, Robert M. ;
Cha, Sang-Wook .
GENESIS, 2020, 58 (06)
[45]   Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection [J].
Xie, Fei ;
Zhou, Xiaoyang ;
Lin, Tingting ;
Wang, Lulu ;
Liu, Chuanhong ;
Luo, Xi ;
Luo, Lihua ;
Chen, Huayu ;
Guo, Kenan ;
Wei, Hong ;
Wang, Yong .
TRANSGENIC RESEARCH, 2020, 29 (5-6) :587-598
[46]   Homology-directed repair in mouse cells increased by CasRx-mediated knockdown or co-expressing Kaposi's sarcoma-associated herpesvirus ORF52 [J].
Pan, Hong ;
Yu, Weina ;
Zhang, Ming .
BIOSCIENCE REPORTS, 2019, 39
[47]   CRISPR/Cas9-mediated epigenetic editing tool: An optimized strategy for targeting de novo DNA methylation with stable status via homology directed repair pathway [J].
Wang, Jie ;
Li, Dandan ;
Yang, Jing ;
Chang, Lu ;
Zhang, Rui ;
Li, Jinming .
BIOCHIMIE, 2022, 202 :190-205