Refined Homology-Directed Repair Methodological Approaches of Donorguide, a Chimeric RNA: DNA tracrRNA

被引:0
作者
Gomez, Adriana Morales [1 ,4 ,5 ]
Thulung, Lucy Rai [2 ]
Daby, Camden L. [2 ]
Savage, Kaila S. [2 ]
Clark, Karl J. [3 ]
Ekker, Stephen C. [4 ,5 ]
机构
[1] Mayo Clin, Ctr Clin & Translat Sci, Rochester, MN USA
[2] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN USA
[3] Texas A&M Univ, Dept Anim Sci, College Stn, TX USA
[4] Univ Texas Austin, Dept Pediat, Dell Med Sch, Austin, TX USA
[5] Univ Texas Austin, Ctr Rare Dis, Dell Med Sch, Austin, TX USA
来源
GEN BIOTECHNOLOGY | 2024年 / 3卷 / 03期
关键词
GENOMIC DNA; BASE; EFFICIENCY; CELLS;
D O I
10.1089/genbio.2024.0016
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The use of single-stranded oligodeoxynucleotide (ssODN) along with CRISPR-Cas9-mediated double-strand breaks (DSB) is one of the most commonly deployed methods for introducing genetic alterations, but this approach has notable limitations. Recognizing this, we have developed a protocol article that provides a step-by-step process of donorguide, a covalent fusion of trans-activating CRISPR RNA (tracrRNA) and ssODN. Donorguide has the potential to enhance the introduction of specific genetic alterations (insertion, deletion, and substitution) at a DSB, improving homology-directed repair methods from zebrafish in vivo to human cells in vitro. We also explored and discuss the impact of increasing the length of donorguide homology arms in zebrafish.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 45 条
[31]   In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway [J].
Cai, Yuan ;
Cheng, Tianlin ;
Yao, Yichuan ;
Li, Xiao ;
Ma, Yuqian ;
Li, Lingyun ;
Zhao, Huan ;
Bao, Jin ;
Zhang, Mei ;
Qiu, Zilong ;
Xue, Tian .
SCIENCE ADVANCES, 2019, 5 (04)
[32]   Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA [J].
Richardson, Christopher D. ;
Ray, Graham J. ;
DeWitt, Mark A. ;
Curie, Gemma L. ;
Corn, Jacob E. .
NATURE BIOTECHNOLOGY, 2016, 34 (03) :339-+
[33]   Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52 [J].
Shao, Simin ;
Ren, Chonghua ;
Liu, Zhongtian ;
Bai, Yichun ;
Chen, Zhilong ;
Wei, Zehui ;
Wang, Xin ;
Zhang, Zhiying ;
Xu, Kun .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2017, 92 :43-52
[34]   Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice [J].
Ali, Zahir ;
Shami, Ashwag ;
Sedeek, Khalid ;
Kamel, Radwa ;
Alhabsi, Abdulrahman ;
Tehseen, Muhammad ;
Hassan, Norhan ;
Butt, Haroon ;
Kababji, Ahad ;
Hamdan, Samir M. ;
Mahfouz, Magdy M. .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[35]   Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9-induced homology-directed repair [J].
Taketani, Yukako ;
Kitamoto, Kohdai ;
Sakisaka, Toshihiro ;
Kimakura, Mikiko ;
Toyono, Tetsuya ;
Yamagami, Satoru ;
Amano, Shiro ;
Kuroda, Masahiko ;
Moore, Tara ;
Usui, Tomohiko ;
Ouchi, Yasuo .
SCIENTIFIC REPORTS, 2017, 7
[36]   CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments [J].
Boel, Annekatrien ;
De Saffel, Hanna ;
Steyaert, Wouter ;
Callewaert, Bert ;
De Paepe, Anne ;
Coucke, Paul J. ;
Willaert, Andy .
DISEASE MODELS & MECHANISMS, 2018, 11 (10)
[37]   Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems [J].
Shams, Forough ;
Bayat, Hadi ;
Mohammadian, Omid ;
Mahboudi, Somayeh ;
Vahidnezhad, Hassan ;
Soosanabadi, Mohsen ;
Rahimpour, Azam .
BIOIMPACTS, 2022,
[38]   Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo [J].
Ibraheim, Raed ;
Tai, Phillip W. L. ;
Mir, Aamir ;
Javeed, Nida ;
Wang, Jiaming ;
Rodriguez, Tomas C. ;
Namkung, Suk ;
Nelson, Samantha ;
Khokhar, Eraj Shafiq ;
Mintzer, Esther ;
Maitland, Stacy ;
Chen, Zexiang ;
Cao, Yueying ;
Tsagkaraki, Emmanouela ;
Wolfe, Scot A. ;
Wang, Dan ;
Pai, Athma A. ;
Xue, Wen ;
Gao, Guangping ;
Sontheimer, Erik J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[39]   Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair [J].
Sweeney, Colin L. ;
Pavel-Dinu, Mara ;
Choi, Uimook ;
Brault, Julie ;
Liu, Taylor ;
Koontz, Sherry ;
Li, Linhong ;
Theobald, Narda ;
Lee, Janet ;
Bello, Ezekiel A. ;
Wu, Xiaolin ;
Meis, Ronald J. ;
Dahl, Gary A. ;
Porteus, Matthew H. ;
Malech, Harry L. ;
De Ravin, Suk See .
GENE THERAPY, 2021, 28 (06) :373-390
[40]   HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair [J].
Di Giorgio, Eros ;
Dalla, Emiliano ;
Tolotto, Vanessa ;
D'Este, Francesca ;
Paluvai, Harikrishnareddy ;
Ranzino, Liliana ;
Brancolini, Claudio .
NUCLEIC ACIDS RESEARCH, 2024, 52 (14) :8218-8240