Stability Analysis of Some Types of Singularly Perturbed Time-Delay Differential Systems: Symmetric Matrix Riccati Equation Approach

被引:1
|
作者
Glizer, Valery Y. [1 ]
机构
[1] Braude Coll Engn, Galilee Res Ctr Appl Math, IL-2161002 Karmiel, Israel
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
time-delay differential system; singularly perturbed system; asymptotic stability; symmetric matrix Riccati equation method; partial slow-fast decomposition; parameter-free stability conditions; SLOW-FAST DECOMPOSITION; EXPONENTIAL STABILITY; STABILIZATION;
D O I
10.3390/sym16070838
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several types of linear and nonlinear singularly perturbed time-delay differential systems are considered. Asymptotic stability of the linear systems and asymptotic stability of the trivial solution of the nonlinear systems, valid for any sufficiently small value of the parameter of singular perturbation, are analyzed. For the stability analysis in the linear case, a partial exact slow-fast decomposition of the original system and an application of the Symmetric Matrix Riccati Equation method are proposed. Such an analysis yields parameter-free conditions, providing the asymptotic stability of the considered linear singularly perturbed time-delay differential systems for any sufficiently small value of the parameter of singular perturbation. Using the asymptotic stability results for the considered linear systems and the method of asymptotic stability in the first approximation, parameter-free conditions, guaranteeing the asymptotic stability of the trivial solution to the considered nonlinear systems for any sufficiently small value of the parameter of singular perturbation, are derived. Illustrative examples are presented.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] STABILITY BOUND ANALYSIS OF SINGULARLY PERTURBED SYSTEMS WITH TIME-DELAY
    Sun, Fengqi
    Yang, Chunyu
    Zhang, Qingling
    Shen, Yongxiang
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2013, 19 (04) : 505 - 511
  • [2] EXPONENTIAL STABILITY OF SINGULARLY PERTURBED DISCRETE SYSTEMS WITH TIME-DELAY
    Park, Kyun-Sang
    Lim, Jong-Tae
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (02): : 865 - 874
  • [3] Stability Analysis and Stabilization of Discrete Singularly Perturbed System with Time-Delay
    Abdeljawad, Rakia
    Bahri, Nesrine
    Ltaief, Majda
    SYSTEMS, AUTOMATION, AND CONTROL, 2019, 9 : 281 - 301
  • [4] Stability Bound Analysis of Slow Sampling Discrete-Time Singularly Perturbed Systems with Time-Delay
    Abdeljawad, R.
    Bahri, N.
    Ltaief, M.
    2017 18TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2017, : 1 - 5
  • [5] Stabilization of Discrete Singularly Perturbed Systems with Time-Delay
    Rakia, Abdeljawad
    Nesrine, Bahri
    Majda, Ltaief
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 812 - 816
  • [6] Exponential stability of singularly perturbed systems with time delay and uncertainties
    Kang, Kyung-In
    Park, Kyun-Sang
    Lim, Jong-Tae
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (01) : 170 - 178
  • [7] Exponential stability of a class of singularly perturbed stochastic time-delay systems with impulse effect
    Chen, Wu-Hua
    Chen, Fu
    Lu, Xiaomei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3463 - 3478
  • [8] Stability of singularly perturbed switched systems with time delay and impulsive effects
    Alwan, Mohamad S.
    Liu, Xinzhi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4297 - 4308
  • [9] Asymptotic Analysis of Spectrum and Stability for One Class of Singularly Perturbed Neutral-Type Time-Delay Systems
    Glizer, Valery Y.
    AXIOMS, 2021, 10 (04)
  • [10] Exponential stability of singularly perturbed switched systems with time delay
    Alwan, Mohamad
    Liu, Xinzhi
    Ingalls, Brian
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (03) : 913 - 921