A multi-interface bimetallic sulfoselenide-selenite heterojunction as a battery-type cathode for high-performance supercapacitors

被引:0
|
作者
Lu, Xintong [1 ]
Chen, Qihang [1 ]
Wu, Lei [1 ]
Cui, Shuangxing [1 ]
Li, Guochang [1 ]
Zhao, Wenna [2 ]
Han, Lei [1 ]
机构
[1] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] NingboTech Univ, Sch Biol & Chem Engn, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
AREAL CAPACITY; NICKEL FOAM; ARRAYS; ELECTRODE;
D O I
10.1039/d4nj02221a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal chalcogenides are considered to be the most promising battery-type cathodes to construct hybrid supercapacitors. The rational design and construction of multi-anion-based heterojunctions with multi-interface structures, such as sulfoselenide and oxyselenide, are significant and necessary. In this work, a bimetallic sulfoselenide-selenite heterojunction, (Ni,Co)(Se,S)2/(Ni,Co)SeO3, was facilely synthesized by a simple one-pot hydrothermal method using NiCo-LDH as a template. The rough surface of the nanosheet array provides more active sites and the multi-interface optimizes the electronic structure for electrochemical reactions. As a battery-type cathode for supercapacitors, the optimized (Ni,Co)(Se,S)2/(Ni,Co)SeO3-1 exhibits a high specific capacitance of 7.61 F cm-2 at a current of 2 mA cm-2. In addition, the assembled HSC device provides a high energy density of 0.59 mW h cm-2 at a power density of 1.44 mW cm-2 and displays a capacitance retention rate of 84.38% after 5000 charge/discharge tests. These results demonstrate a green, safe and simple method to prepare bimetallic sulfoselenide-selenite heterojunctions from LDH-based templates as high-capacity battery-type materials for hybrid supercapacitors. A bimetallic sulfoselenide-selenite heterojunction of (Ni,Co)(Se,S)2/(Ni,Co)SeO3 was prepared from LDH-based templates as high-capacity battery-type materials for hybrid supercapacitors.
引用
收藏
页码:15227 / 15239
页数:13
相关论文
empty
未找到相关数据