Exploring Implicit Biological Heterogeneity in ASD Diagnosis Using a Multi-Head Attention Graph Neural Network

被引:0
|
作者
Moon, Hyung-Jun [1 ]
Cho, Sung-Bae [2 ]
机构
[1] Yonsei Univ, Dept Artificial Intelligence, Seoul 03722, South Korea
[2] Yonsei Univ, Dept Comp Sci, Seoul 03722, South Korea
关键词
autism spectrum disorder; dynamic functional connectivity; graph neural network; multi-head attention; AUTISM; AMYGDALA; CHILDREN; CLASSIFICATION; PREDICTION; MICROGLIA;
D O I
10.31083/j.jin2307135
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder exhibiting heterogeneous characteristics in patients, including variability in developmental progression and distinct neuroanatomical features influenced by sex and age. Recent advances in deep learning models based on functional connectivity (FC) graphs have produced promising results, but they have focused on generalized global activation patterns and failed to capture specialized regional characteristics and accurately assess disease indications. Methods: To overcome these limitations, we propose a novel deep learning method that models FC with multi-head attention, which enables simultaneous modeling of the intricate and variable patterns of brain connectivity associated with ASD, effectively extracting abnormal patterns of brain connectivity. The proposed method not only identifies region-specific correlations but also emphasizes connections at specific, transient time points from diverse perspectives. The extracted FC is transformed into a graph, assigning weighted labels to the edges to reflect the degree of correlation, which is then processed using a graph neural network capable of handling edge labels. Results: Experiments on the autism brain imaging data exchange (ABIDE) I and II datasets, which include a heterogeneous cohort, showed superior performance over the state-of-the-art methods, improving accuracy by up to 3.7%p. The incorporation of multi-head attention in FC analysis markedly improved the distinction between typical brains and those affected by ASD. Additionally, the ablation study validated diverse brain characteristics in ASD patients across different ages and sexes, offering insightful interpretations. Conclusion: These results emphasize the effectiveness of the method in enhancing diagnostic accuracy and its potential in advancing neurological research for ASD diagnosis.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An Improved Model for Analyzing Textual Sentiment Based on a Deep Neural Network Using Multi-Head Attention Mechanism
    Sharaf Al-deen, Hashem Saleh
    Zeng, Zhiwen
    Al-sabri, Raeed
    Hekmat, Arash
    APPLIED SYSTEM INNOVATION, 2021, 4 (04)
  • [22] DDNet: a hybrid network based on deep adaptive multi-head attention and dynamic graph convolution for EEG emotion recognition
    Xu, Bingyue
    Zhang, Xin
    Zhang, Xiu
    Sun, Baiwei
    Wang, Yujie
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [23] Hybrid graph convolutional networks with multi-head attention for location recommendation
    Ting Zhong
    Shengming Zhang
    Fan Zhou
    Kunpeng Zhang
    Goce Trajcevski
    Jin Wu
    World Wide Web, 2020, 23 : 3125 - 3151
  • [24] Hybrid graph convolutional networks with multi-head attention for location recommendation
    Zhong, Ting
    Zhang, Shengming
    Zhou, Fan
    Zhang, Kunpeng
    Trajcevski, Goce
    Wu, Jin
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (06): : 3125 - 3151
  • [25] Hybrid neural network model based on multi-head attention for English text emotion analysis
    Li, Ping
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (35):
  • [26] CephaNN: A Multi-Head Attention Network for Cephalometric Landmark Detection
    Qian, Jiahong
    Luo, Weizhi
    Cheng, Ming
    Tao, Yubo
    Lin, Jun
    Lin, Hai
    IEEE ACCESS, 2020, 8 : 112633 - 112641
  • [27] MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting
    Cao, Yang
    Liu, Detian
    Yin, Qizheng
    Xue, Fei
    Tang, Hengliang
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [28] Intelligent Bearing Fault Diagnosis Using Multi-Head Attention-Based CNN
    Wang, Hui
    Xu, Jiawen
    Yan, Ruqiang
    Sun, Chuang
    Chen, Xuefeng
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 112 - 118
  • [29] EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention
    Hu, Zhangfang
    Chen, Libujie
    Luo, Yuan
    Zhou, Jingfan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [30] Parkinson's severity diagnosis explainable model based on 3D multi-head attention residual network
    Huang, Jiehui
    Lin, Lishan
    Yu, Fengcheng
    He, Xuedong
    Song, Wenhui
    Lin, Jiaying
    Tang, Zhenchao
    Yuan, Kang
    Li, Yucheng
    Huang, Haofan
    Pei, Zhong
    Xian, Wenbiao
    Chen, Calvin Yu-Chian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170