Thermodynamically consistent Cahn-Hilliard-Navier-Stokes equations using the metriplectic dynamics formalism

被引:1
作者
Zaidni, Azeddine [1 ,2 ,3 ]
Morrison, Philip J. [2 ,3 ]
Benjelloun, Saad [4 ,5 ]
机构
[1] Mohammed VI Polytech Univ, Coll Comp Lab, Lot 660, Ben Guerir 43150, Morocco
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[4] Makhbar Math Sci Res Inst, Casablanca, Morocco
[5] Leonard de Vinci Pole Univ, Res Ctr, Paris, France
关键词
Two phase fluid flow; Cahn-Hilliard; Thermodynamic consistency; Metriplectic dynamics; Hamiltonian structure; FORMULATION;
D O I
10.1016/j.physd.2024.134303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cahn-Hilliard-Navier-Stokes (CHNS) systems describe flows with two-phases, e.g., a liquid with bubbles. Obtaining constitutive relations for general dissipative processes for such systems, which are thermodynamically consistent, can be a challenge. We show how the metriplectic 4-bracket formalism (Morrison Updike, 2024) achieves this in a straightforward, in fact algorithmic, manner. First, from the noncanonical Hamiltonian formulation for the ideal part of a CHNS system we obtain an appropriate Casimir to serve the entropy in the metriplectic formalism that describes the dissipation (e.g. viscosity, heat conductivity diffusion effects). General thermodynamics with the concentration variable and its thermodynamics conjugate, the chemical potential, are included. Having expressions for the Hamiltonian (energy), entropy, and Poisson bracket, we describe a procedure for obtaining a metriplectic 4-bracket that describes thermodynamically consistent dissipative effects. The 4-bracket formalism leads naturally to a general CHNS system that allows for anisotropic surface energy effects. This general CHNS system reduces to cases in the literature, to which we can compare.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Hamiltonian formalism of extended magnetohydrodynamics [J].
Abdelhamid, H. M. ;
Kawazura, Y. ;
Yoshida, Z. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (23)
[2]   A phase-field model of solidification with convection [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (1-2) :175-194
[3]  
Beris A N., 1994, Thermodynamics of Flowing Systems With Internal Microstructure
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]  
Callen H., 1966, Thermodynamics
[6]   On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets [J].
Chandre, C. ;
de Guillebon, L. ;
Back, A. ;
Tassi, E. ;
Morrison, P. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (12)
[7]   A general metriplectic framework with application to dissipative extended magnetohydrodynamics [J].
Coquinot, Baptiste ;
Morrison, Philip J. .
JOURNAL OF PLASMA PHYSICS, 2020, 86 (03)
[8]   Derivation of the Hall and extended magnetohydrodynamics brackets [J].
D'Avignon, Eric C. ;
Morrison, Philip J. ;
Lingam, Manasvi .
PHYSICS OF PLASMAS, 2016, 23 (06)
[9]  
De Groot S.R., 1984, Non-Equilibrium Thermodynamics
[10]   The thermodynamics of irreversible processes II Fluid mixtures [J].
Eckart, C .
PHYSICAL REVIEW, 1940, 58 (03) :269-275