Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation

被引:8
作者
Aitken, Sally N. [1 ]
Jordan, Rebecca [2 ]
Tumas, Hayley R. [1 ]
机构
[1] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC, Canada
[2] CSIRO Environm, Sandy Bay, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
climate change; demography; conservation strategies; genomic offset; genotype-environment association; local adaptation; EFFECTIVE POPULATION-SIZE; GENE FLOW; CLIMATE-CHANGE; CONCEPTUAL ISSUES; TREE POPULATIONS; LOCAL ADAPTATION; RESCUE; MANAGEMENT; MIGRATION; SELECTION;
D O I
10.1146/annurev-arplant-070523-044239
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
引用
收藏
页码:707 / 736
页数:30
相关论文
共 197 条
[71]   Maladaptation, migration and extirpation fuel climate change risk in a forest tree species [J].
Gougherty, Andrew V. ;
Keller, Stephen R. ;
Fitzpatrick, Matthew C. .
NATURE CLIMATE CHANGE, 2021, 11 (02) :166-171
[72]   The immediate costs and long-term benefits of assisted gene flow in large populations [J].
Grummer, Jared A. ;
Booker, Tom R. ;
Matthey-Doret, Remi ;
Nietlisbach, Pirmin ;
Thomaz, Andrea T. ;
Whitlock, Michael C. .
CONSERVATION BIOLOGY, 2022, 36 (04)
[73]   Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics [J].
Guerrero, Jimena ;
Andrello, Marco ;
Burgarella, Concetta ;
Manel, Stephanie .
NEW PHYTOLOGIST, 2018, 219 (01) :378-390
[74]   Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales [J].
Gugger, Paul F. ;
Fitz-Gibbon, Sorel T. ;
Albarran-Lara, Ana ;
Wright, Jessica W. ;
Sork, Victoria L. .
MOLECULAR ECOLOGY, 2021, 30 (02) :406-423
[75]   SLiM 3: Forward Genetic Simulations Beyond the Wright-Fisher Model [J].
Haller, Benjamin C. ;
Messer, Philipp W. .
MOLECULAR BIOLOGY AND EVOLUTION, 2019, 36 (03) :632-637
[76]   Velocity of climate change algorithms for guiding conservation and management [J].
Hamann, Andreas ;
Roberts, David R. ;
Barber, Quinn E. ;
Carroll, Carlos ;
Nielsen, Scott E. .
GLOBAL CHANGE BIOLOGY, 2015, 21 (02) :997-1004
[77]  
Hargreaves AL, 2020, AM NAT, V195, P395, DOI [10.1086/707323, 10.5061/dryad.0vt4b8gv1]
[78]   The application gap: Genomics for biodiversity and ecosystem service management [J].
Heuertz, Myriam ;
Carvalho, Silvia B. ;
Galindo, Juan ;
Rinkevich, Baruch ;
Robakowski, Piotr ;
Aavik, Tsipe ;
Altinok, Ilhan ;
Barth, Julia M. I. ;
Cotrim, Helena ;
Goessen, Roos ;
Gonzalez-Martinez, Santiago C. ;
Grebenc, Tine ;
Hoban, Sean ;
Kopatz, Alexander ;
McMahon, Barry J. ;
Porth, Ilga ;
Raeymaekers, Joost A. M. ;
Traeger, Sabrina ;
Valdecantos, Alejandro ;
Vella, Adriana ;
Vernesi, Cristiano ;
Garnier-Gere, Pauline .
BIOLOGICAL CONSERVATION, 2023, 278
[79]   Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework [J].
Hoban, Sean ;
Bruford, Michael W. ;
da Silva, Jessica M. ;
Funk, W. Chris ;
Frankham, Richard ;
Gill, Michael J. ;
Grueber, Catherine E. ;
Heuertz, Myriam ;
Hunter, Margaret E. ;
Kershaw, Francine ;
Lacy, Robert C. ;
Lees, Caroline ;
Lopes-Fernandes, Margarida ;
MacDonald, Anna J. ;
Mastretta-Yanes, Alicia ;
McGowan, Philip J. K. ;
Meek, Mariah H. ;
Mergeay, Joachim ;
Millette, Katie L. ;
Mittan-Moreau, Cinnamon S. ;
Navarro, Laetitia M. ;
O'Brien, David ;
Ogden, Rob ;
Segelbacher, Gernot ;
Paz-Vinas, Ivan ;
Vernesi, Cristiano ;
Laikre, Linda .
CONSERVATION GENETICS, 2023, 24 (02) :181-191
[80]   Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition [J].
Hoban, Sean ;
Archer, Frederick, I ;
Bertola, Laura D. ;
Bragg, Jason G. ;
Breed, Martin F. ;
Bruford, Michael W. ;
Coleman, Melinda A. ;
Ekblom, Robert ;
Funk, W. Chris ;
Grueber, Catherine E. ;
Hand, Brian K. ;
Jaffe, Rodolfo ;
Jensen, Evelyn ;
Johnson, Jeremy S. ;
Kershaw, Francine ;
Liggins, Libby ;
MacDonald, Anna J. ;
Mergeay, Joachim ;
Miller, Joshua M. ;
Muller-Karger, Frank ;
O'Brien, David ;
Paz-Vinas, Ivan ;
Potter, Kevin M. ;
Razgour, Orly ;
Vernesi, Cristiano ;
Hunter, Margaret E. .
BIOLOGICAL REVIEWS, 2022, 97 (04) :1511-1538