Organic Nano-Junctions: Linking Nanomorphology and Charge Transport in Organic Semiconductor Nanoparticles for Organic Photovoltaic Devices

被引:0
作者
Laval, Hugo [1 ]
Tian, Yue [2 ]
Lafranconi, Virginia [1 ]
Barr, Matthew [3 ]
Dastoor, Paul [3 ]
Marcus, Matthew M. [4 ]
Wantz, Guillaume [1 ]
Holmes, Natalie P. [5 ,6 ,7 ]
Hirakawa, Kazuhiko [2 ,8 ]
Chambon, Sylvain [1 ,8 ]
机构
[1] Univ Bordeaux, Bordeaux INP, CNRS, IMS UMR 5218, F-33400 Talence, France
[2] Univ Tokyo, Inst Ind Sci, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
[3] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[6] Univ Sydney, Fac Sci, Nano Inst, Sydney, NSW 2006, Australia
[7] Univ Sydney, Australian Ctr Microscopy & Microanal, Madsen Bldg F09, Sydney, NSW 2006, Australia
[8] Univ Tokyo, Inst Ind Sci, CNRS, LIMMS,IIS,IRL2820, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
关键词
charge transport; nanogap; nanojunction; nanoparticles; organic photovoltaic; OPEN-CIRCUIT VOLTAGE; PHOTOCURRENT GENERATION; MOLECULAR-WEIGHT; POLYMER; POLY(3-HEXYLTHIOPHENE); PERFORMANCE; TRANSISTORS; EFFICIENCY; ELECTRON; MOBILITY;
D O I
10.1002/smll.202404112
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, innovative nanoscale devices are developed to investigate the charge transport in organic semiconductor nanoparticles. Using different steps of lithography techniques and dielectrophoresis, planar organic nano-junctions are fabricated from which hole mobilities are extracted in a space charge-limited current regime. Subsequently, these devices are used to investigate the impact of the composition and morphology of organic semiconductor nanoparticles on the charge mobilities. Pure donor nanoparticles and composite donor:acceptor nanoparticles with different donor compositions in their shell are inserted in the nanogap electrode to form the nano-junctions. The results highlight that the hole mobilities in the composite nanoparticles decrease by two-fold compared to pure donor nanoparticles. However, no significant change between the two kinds of composite nanoparticle morphologies is observed, indicating that conduction pathways for the holes are as efficient for donor proportion in the shell from 40% to 60%. Organic photovoltaic (OPV) devices are fabricated from water-based colloidal inks containing the two composite nanoparticles (P3HT:eh-IDTBR and P3HT:o-IDTBR) and no significant change in the performances is observed in accordance with the mobility results. Through this study, the performance of OPV devices have been succesfully correlated to the transport properties of nanoparticles having different morphology via innovative nanoscale devices.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Classification of Additives for Organic Photovoltaic Devices [J].
Machui, Florian ;
Maisch, Philipp ;
Burgues-Ceballos, Ignasi ;
Langner, Stefan ;
Krantz, Johannes ;
Ameri, Tayebeh ;
Brabec, Christoph J. .
CHEMPHYSCHEM, 2015, 16 (06) :1275-1280
[22]   Computational characterization of organic photovoltaic devices [J].
Shang, Yuan ;
Li, Qikai ;
Meng, Lingyi ;
Wang, Dong ;
Shuai, Zhigang .
THEORETICAL CHEMISTRY ACCOUNTS, 2011, 129 (3-5) :291-301
[23]   Endohedral fullerenes for organic photovoltaic devices [J].
Ross, Russel B. ;
Cardona, Claudia M. ;
Guldi, Dirk M. ;
Sankaranarayanan, Shankara Gayathri ;
Reese, Matthew O. ;
Kopidakis, Nikos ;
Peet, Jeff ;
Walker, Bright ;
Bazan, Guillermo C. ;
Van Keuren, Edward ;
Holloway, Brian C. ;
Drees, Martin .
NATURE MATERIALS, 2009, 8 (03) :208-212
[24]   Investigation of charge transport in organic polymer donor/acceptor photovoltaic materials [J].
Ahmad, Zubair ;
Abdullah, Shahino Mah ;
Zafar, Qayyum ;
Sulaiman, Khaulah .
JOURNAL OF MODERN OPTICS, 2014, 61 (21) :1730-1734
[25]   Partitioning of the organic layers for the fabrication of high efficiency organic photovoltaic devices [J].
Kang, Nam Su ;
Ju, Byeong-Kwon ;
Lee, Changhee ;
Ahn, Jae-Pyoung ;
Chin, Byrung Doo ;
Yu, Jae-Woong .
ORGANIC ELECTRONICS, 2009, 10 (06) :1091-1096
[26]   Charge transport control via polymer polymorph modulation in ternary organic photovoltaic composites [J].
Kan, Zhipeng ;
Colella, Letizia ;
Canesi, Eleonora V. ;
Vorobiev, Alexei ;
Skrypnychuk, Vasyl ;
Terraneo, Giancarlo ;
Barbero, David R. ;
Bertarelli, Chiara ;
MacKenzie, Roderick C. I. ;
Keivanidis, Panagiotis E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) :1195-1201
[27]   Three-Dimensional Charge Transport in Organic Semiconductor Single Crystals [J].
He, Tao ;
Zhang, Xiying ;
Jia, Jiong ;
Li, Yexin ;
Tao, Xutang .
ADVANCED MATERIALS, 2012, 24 (16) :2171-2175
[28]   The Origin of Charge Localization Observed in Organic Photovoltaic Materials [J].
Johns, James E. ;
Muller, Eric A. ;
Frechet, Jean M. J. ;
Harris, Charles B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15720-15725
[29]   Enhancement in the performance of organic photovoltaic devices with pristine graphene [J].
Yu, Fei ;
Kuppa, Vikram K. .
MATERIALS LETTERS, 2013, 99 :72-75
[30]   Simulating charge transport in organic semiconductors and devices: a review [J].
Groves, C. .
REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (02)