A Novel Parameter Estimation Method for Polynomial Phase Signals via Adaptive EKF

被引:0
|
作者
Du, Huagui [1 ]
Song, Yongping [1 ]
Zhou, Jiwen [2 ]
Fan, Chongyi [1 ]
Huang, Xiaotao [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha 410073, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
基金
中国国家自然科学基金;
关键词
Estimation; State-space methods; Signal to noise ratio; Noise; Kalman filters; Internet of Things; Computational complexity; APT-EKF; estimation of PPS coefficients; extended Kalman filtering (EKF); phase tracking; polynomial phase signal (PPS); state-space model; EXTENDED KALMAN FILTER; ALGORITHM; TRANSFORM; AMPLITUDE;
D O I
10.1109/JIOT.2024.3373642
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, an efficient method for parameter estimation of polynomial phase signal (PPS) is proposed. Instead of the existing methods based on parametric ergodic search or phase differentiation, the proposed method adaptively tracks the PPS phase through extended Kalman filtering (EKF), termed as APT-EKF. First, based on the smoothness assumption of the local phase, a state-space model describing the PPS phase is constructed. Then, by solving the state-space model through EKF, the PPS phase can be tracked. Finally, the least square estimation (LSE) is performed for the inversion of PPS coefficients, and the O'Shea refinement strategy is implemented to enhance the estimation accuracy, thereby achieving the Cramer-Rao lower bound (CRLB). Compared with most existing studies, the proposed method occupies an obvious advantage in signal-to-noise ratio (SNR) threshold and computational efficiency. It is suitable for the arbitrary order PPS. Moreover, this article provides a comprehensive analysis of the parameter initialization, performance bounds, and computational complexity of the proposed method. Both simulation and experiment results are provided to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:20816 / 20830
页数:15
相关论文
共 50 条
  • [1] New method for parameter estimation of polynomial phase signals
    Zhang, X. H.
    Liu, L. F.
    Cai, J. Y.
    Yang, Y. W.
    IET SIGNAL PROCESSING, 2011, 5 (01) : 66 - 74
  • [2] A Novel Parameter Estimation for Polynomial Phase Signals Using the Spectrum Phase
    Jiang, Xiaodong
    Wu, Siliang
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1919 - 1923
  • [3] Parameter estimation of multicomponent polynomial phase signals
    Zhang, Han-ling
    Liu, Qing-yun
    Li, Zhi-shun
    INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 1008 - 1012
  • [4] A new method for parameter estimation of high-order polynomial-phase signals
    Cao, Runqing
    Li, Ming
    Zuo, Lei
    Wang, Zeyu
    Lu, Yunlong
    SIGNAL PROCESSING, 2018, 142 : 212 - 222
  • [5] Order determination and parameter estimation of multicomponent polynomial phase signals
    Ikram, MZ
    Zhou, GT
    NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 352 - 355
  • [6] Parametric Methods Comparisons for Parameter Estimation of Polynomial Phase Signals
    Li, Xiumei
    Bi, Guoan
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 743 - 757
  • [7] Parameter Estimation of Polynomial Phase Signals Using Spectrum Distinction
    Jiang, Xiaodong
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 8655 - 8667
  • [8] Parameter estimation of coupled polynomial phase and sinusoidal FM signals
    Djurovic, Igor
    Wang, Pu
    Simeunovic, Marko
    Orlik, Philip, V
    SIGNAL PROCESSING, 2018, 149 : 1 - 13
  • [9] Novel parameter estimation of high-order polynomial phase signals using group delay
    Jiang, Xiaodong
    Wu, Siliang
    Chen, Yuan
    SIGNAL PROCESSING, 2021, 183
  • [10] Subspace-based algorithm for parameter estimation of polynomial phase signals
    Wu, Yuntao
    So, Hing Cheung
    Liu, Hongqing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) : 4977 - 4983