POSTER: Advancing Federated Edge Computing with Continual Learning for Secure and Efficient Performance

被引:0
作者
Chen, Chunlu [1 ]
Wang, Kevin I-Kai [2 ]
Li, Peng [3 ]
Sakurai, Kouichi [1 ]
机构
[1] Kyushu Univ, Fukuoka, Japan
[2] Univ Auckland, Auckland, New Zealand
[3] Univ Aizu, Aizu Wakamatsu, Fukushima, Japan
来源
APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, ACNS 2023 SATELLITE WORKSHOPS, ADSC 2023, AIBLOCK 2023, AIHWS 2023, AIOTS 2023, CIMSS 2023, CLOUD S&P 2023, SCI 2023, SECMT 2023, SIMLA 2023 | 2023年 / 13907卷
基金
日本科学技术振兴机构;
关键词
Federated Learning; Continual Learning; Security;
D O I
10.1007/978-3-031-41181-6_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Learning (FL) and the Internet of Things (IoT) have transformed data processing and analysis, overcoming traditional cloud computing limitations. However, challenges such as catastrophic forgetting in continuous training scenarios arise. To address these, we propose an FL framework that supports continual learning while enhancing system security. We preserve critical knowledge through the incorporation of Knowledge Distillation (KD), addressing the issue of catastrophic forgetting. In addition, we have integrated encryption techniques to secure the updated parameters of clients from potential threats posed by attackers.
引用
收藏
页码:685 / 689
页数:5
相关论文
共 16 条
  • [1] Non-IID data and Continual Learning processes in Federated Learning: A long road ahead
    Criado, Marcos F.
    Casado, Fernando E.
    Iglesias, Roberto
    V. Regueiro, Carlos
    Barro, Senen
    [J]. INFORMATION FUSION, 2022, 88 : 263 - 280
  • [2] Embracing Change: Continual Learning in Deep Neural Networks
    Hadsell, Raia
    Rao, Dushyant
    Rusu, Andrei A.
    Pascanu, Razvan
    [J]. TRENDS IN COGNITIVE SCIENCES, 2020, 24 (12) : 1028 - 1040
  • [3] Overcoming catastrophic forgetting in neural networks
    Kirkpatricka, James
    Pascanu, Razvan
    Rabinowitz, Neil
    Veness, Joel
    Desjardins, Guillaume
    Rusu, Andrei A.
    Milan, Kieran
    Quan, John
    Ramalho, Tiago
    Grabska-Barwinska, Agnieszka
    Hassabis, Demis
    Clopath, Claudia
    Kumaran, Dharshan
    Hadsell, Raia
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) : 3521 - 3526
  • [4] A Survey on Mobile Edge Computing: The Communication Perspective
    Mao, Yuyi
    You, Changsheng
    Zhang, Jun
    Huang, Kaibin
    Letaief, Khaled B.
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (04): : 2322 - 2358
  • [5] Class-Incremental Learning: Survey and Performance Evaluation on Image Classification
    Masana, Marc
    Liu, Xialei
    Twardowski, Bartlomiej
    Menta, Mikel
    Bagdanov, Andrew D.
    van de Weijer, Joost
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5513 - 5533
  • [6] McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
  • [7] Never-Ending Learning
    Mitchell, T.
    Cohen, W.
    Hruschka, E.
    Talukdar, P.
    Yang, B.
    Betteridge, J.
    Carlson, A.
    Dalvi, B.
    Gardner, M.
    Kisiel, B.
    Krishnamurthy, J.
    Lao, N.
    Mazaitis, K.
    Mohamed, T.
    Nakashole, N.
    Platanios, E.
    Ritter, A.
    Samadi, M.
    Settles, B.
    Wang, R.
    Wijaya, D.
    Gupta, A.
    Chen, X.
    Saparov, A.
    Greaves, M.
    Welling, J.
    [J]. COMMUNICATIONS OF THE ACM, 2018, 61 (05) : 103 - 115
  • [8] A survey on security and privacy of federated learning
    Mothukuri, Viraaji
    Parizi, Reza M.
    Pouriyeh, Seyedamin
    Huang, Yan
    Dehghantanha, Ali
    Srivastava, Gautam
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 115 : 619 - 640
  • [9] Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges
    Nguyen, Dinh C.
    Ding, Ming
    Quoc-Viet Pham
    Pathirana, Pubudu N.
    Le, Long Bao
    Seneviratne, Aruna
    Li, Jun
    Niyato, Dusit
    Poor, H. Vincent
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) : 12806 - 12825
  • [10] Continual lifelong learning with neural networks: A review
    Parisi, German I.
    Kemker, Ronald
    Part, Jose L.
    Kanan, Christopher
    Wermter, Stefan
    [J]. NEURAL NETWORKS, 2019, 113 : 54 - 71