Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes

被引:9
作者
Hu, Kaixin [1 ,2 ]
Meyer, Fernando [1 ,2 ]
Deng, Zhi-Luo [1 ,2 ]
Asgari, Ehsaneddin [1 ,3 ]
Kuo, Tzu-Hao [1 ,2 ]
Muench, Philipp C. [1 ,2 ,4 ,5 ,6 ]
Mchardy, Alice C. [1 ,2 ]
机构
[1] Helmholtz Ctr Infect Res, Computat Biol Infect Res, Inhoffenstr 7, D-38124 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig Integrated Ctr Syst Biol BRICS, Braunschweig, Germany
[3] Univ Calif Berkeley, Mol Cell Biomech Lab, Berkeley, CA USA
[4] Hannover Med Sch, Cluster Excellence RESIST EXC 2155, Hannover, Germany
[5] German Ctr Infect Res DZIF, Partner Site Hannover Braunschweig, Braunschweig, Germany
[6] Harvard Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
AMR; antimicrobial resistance; machine learning; benchmarking; phenotype prediction; ANTIBIOTIC-RESISTANCE; DRUG-RESISTANCE; MOLECULAR-MECHANISMS; GENES; SUSCEPTIBILITY; IDENTIFICATION; VALIDATION; QUALITY;
D O I
10.1093/bib/bbae206
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species-antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amoxicillin/clavulanic acid, cefoxitin, ceftazidime and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, Campylobacter jejuni and Enterococcus faecium phenotypes were more robustly predicted than those of Escherichia coli, Staphylococcus aureus, Salmonella enterica, Neisseria gonorrhoeae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus pneumoniae and Mycobacterium tuberculosis. In addition, our study provides software recommendations for each species-antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
引用
收藏
页数:14
相关论文
共 96 条
[1]   Molecular mechanisms of antibacterial multidrug resistance [J].
Alekshun, Michael N. ;
Levy, Stuart B. .
CELL, 2007, 128 (06) :1037-1050
[2]   Antimicrobial Resistance and Its Spread Is a Global Threat [J].
Aljeldah, Mohammed M. .
ANTIBIOTICS-BASEL, 2022, 11 (08)
[3]  
[Anonymous], 2019, Molecular methods for antimicrobial resistance (AMR) diagnostics to enhance the Global Antimicrobial Resistance Surveillance System
[4]   PATRIC as a unique resource for studying antimicrobial resistance [J].
Antonopoulos, Dionysios A. ;
Assaf, Rida ;
Aziz, Ramy Karam ;
Brettin, Thomas ;
Bun, Christopher ;
Conrad, Neal ;
Davis, James J. ;
Dietrich, Emily M. ;
Disz, Terry ;
Gerdes, Svetlana ;
Kenyon, Ronald W. ;
Machi, Dustin ;
Mao, Chunhong ;
Murphy-Olson, Daniel E. ;
Nordberg, Eric K. ;
Olsen, Gary J. ;
Olson, Robert ;
Overbeek, Ross ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Santerre, John ;
Shukla, Maulik ;
Stevens, Rick L. ;
VanOeffelen, Margo ;
Vonstein, Veronika ;
Warren, Andrew S. ;
Wattam, Alice R. ;
Xia, Fangfang ;
Yoo, Hyunseung .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1094-1102
[5]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[6]   A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria [J].
Aun, Erki ;
Brauer, Age ;
Kisand, Veljo ;
Tenson, Tanel ;
Remm, Maido .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
[7]   Predicting Antimicrobial Resistance Using Partial Genome Alignments [J].
Aytan-Aktug, D. ;
Nguyen, M. ;
Clausen, P. T. L. C. ;
Stevens, R. L. ;
Aarestrup, F. M. ;
Lund, O. ;
Davis, J. J. .
MSYSTEMS, 2021, 6 (03)
[8]  
Aytan-Aktug D., 2020, MSYSTEMS, V5, P5
[9]   Contingency, repeatability, and predictability in the evolution of a prokaryotic pangenome [J].
Beavan, Alan ;
Sananes, Maria Rosa Domingo - ;
Mcinerney, James O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (01)
[10]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51