Ultrasound and diffuse optical tomography-transformer model for assessing pathological complete response to neoadjuvant chemotherapy in breast cancer

被引:2
作者
Zou, Yun [1 ]
Xue, Minghao [1 ]
Hossain, Md Iqbal [2 ]
Zhu, Quing [1 ,3 ]
机构
[1] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[2] Washington Univ, Imaging Sci, St Louis, MO USA
[3] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63130 USA
关键词
diffuse optical tomography; pathological complete response; dual input transformer; breast cancer; TUMOR RESPONSE; PREDICTION; ULTRASONOGRAPHY; ACCURACY; THERAPY; PET/CT;
D O I
10.1117/1.JBO.29.7.076007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Significance We evaluate the efficiency of integrating ultrasound (US) and diffuse optical tomography (DOT) images for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. The ultrasound-diffuse optical tomography (USDOT)-Transformer model represents a significant step toward accurate prediction of pCR, which is critical for personalized treatment planning. Aim We aim to develop and assess the performance of the USDOT-Transformer model, which combines US and DOT images with tumor receptor biomarkers to predict the pCR of breast cancer patients under NAC. Approach We developed the USDOT-Transformer model using a dual-input transformer to process co-registered US and DOT images along with tumor receptor biomarkers. Our dataset comprised imaging data from 60 patients at multiple time points during their chemotherapy treatment. We used fivefold cross-validation to assess the model's performance, comparing its results against a single modality of US or DOT. Results The USDOT-Transformer model demonstrated excellent predictive performance, with a mean area under the receiving characteristic curve of 0.96 (95%CI: 0.93 to 0.99) across the fivefold cross-validation. The integration of US and DOT images significantly enhanced the model's ability to predict pCR, outperforming models that relied on a single imaging modality (0.87 for US and 0.82 for DOT). This performance indicates the potential of advanced deep learning techniques and multimodal imaging data for improving the accuracy (ACC) of pCR prediction. Conclusion The USDOT-Transformer model offers a promising non-invasive approach for predicting pCR to NAC in breast cancer patients. By leveraging the structural and functional information from US and DOT images, the model offers a faster and more reliable tool for personalized treatment planning. Future work will focus on expanding the dataset and refining the model to further improve its accuracy and generalizability.
引用
收藏
页数:15
相关论文
共 42 条
[1]   Changes in Diffuse Optical Tomography Images During Early Stages of Neoadjuvant Chemotherapy Correlate with Tumor Response in Different Breast Cancer Subtypes [J].
Altoe, Mirella L. ;
Kalinsky, Kevin ;
Marone, Alessandro ;
Kim, Hyun K. ;
Guo, Hua ;
Hibshoosh, Hanina ;
Tejada, Mariella ;
Crew, Katherine D. ;
Accordino, Melissa K. ;
Trivedi, Meghna S. ;
Hershman, Dawn L. ;
Hielscher, Andreas H. .
CLINICAL CANCER RESEARCH, 2021, 27 (07) :1949-1957
[2]   Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients [J].
Baumgartner, Annina ;
Tausch, Christoph ;
Hosch, Stefanie ;
Papassotiropoulos, Barbel ;
Varga, Zsuzsanna ;
Rageth, Christoph ;
Baege, Astrid .
BREAST, 2018, 39 :19-23
[3]   Neoadjuvant Therapy for Resectable Pancreatic Cancer A New Standard of Care. Pooled Data From 3 Randomized Controlled Trials [J].
Birrer, Dominique L. ;
Golcher, Henriette ;
Casadei, Riccardo ;
Haile, Sarah R. ;
Fritsch, Ralph ;
Hussung, Saskia ;
Brunner, Thomas B. ;
Fietkau, Rainer ;
Meyer, Thomas ;
Gruetzmann, Robert ;
Merkel, Susanne ;
Ricci, Claudio ;
Ingaldi, Carlo ;
Di Marco, Mariacristina ;
Guido, Alessandra ;
Serra, Carla ;
Minni, Francesco ;
Pestalozzi, Bernhard ;
Petrowsky, Henrik ;
DeOliveira, Michelle ;
Bechstein, Wolf O. ;
Bruns, Christiane J. ;
Oberkofler, Christian E. ;
Puhan, Milo ;
Lesurtel, Mickaeel ;
Heinrich, Stefan ;
Clavien, Pierre-Alain .
ANNALS OF SURGERY, 2021, 274 (05) :713-720
[4]   Preoperative chemotherapy treatment of breast cancer - A review [J].
Buzdar, Aman U. .
CANCER, 2007, 110 (11) :2394-2407
[5]   Performance of Mid-Treatment Breast Ultrasound and Axillary Ultrasound in Predicting Response to Neoadjuvant Chemotherapy by Breast Cancer Subtype [J].
Candelaria, Rosalind P. ;
Bassett, Roland L. ;
Symmans, William Fraser ;
Ramineni, Maheshwari ;
Moulder, Stacy L. ;
Kuerer, Henry M. ;
Thompson, Alastair M. ;
Yang, Wei Tse .
ONCOLOGIST, 2017, 22 (04) :394-401
[6]   Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment [J].
Cochran, Jeffrey M. ;
Busch, David R. ;
Leproux, Anais ;
Zhang, Zheng ;
O'Sullivan, Thomas D. ;
Ceryssi, Albert E. ;
Carpenter, Philip M. ;
Mehta, Rita S. ;
Roblyer, Darren ;
Yang, Wei ;
Paulsen, Keith D. ;
Pogue, Brian ;
Jiang, Shudong ;
Kaufman, Peter A. ;
Chung, So Hyun ;
Schnall, Mitchell ;
Snyder, Bradley S. ;
Hylton, Nola ;
Carp, Stefan A. ;
Isakoff, Steven J. ;
Mankoff, David ;
Tromberg, Bruce J. ;
Yodh, Arjun G. .
JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (02)
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]   A Clinical-Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases [J].
Gan, Liangyu ;
Ma, Mingming ;
Liu, Yinhua ;
Liu, Qian ;
Xin, Ling ;
Cheng, Yuanjia ;
Xu, Ling ;
Qin, Naishan ;
Jiang, Yuan ;
Zhang, Xiaodong ;
Wang, Xiaoying ;
Ye, Jingming .
FRONTIERS IN ONCOLOGY, 2021, 11
[9]   Dynamic Diffuse Optical Tomography for Monitoring Neoadjuvant Chemotherapy in Patients with Breast Cancer [J].
Gunther, Jacqueline E. ;
Lim, Emerson A. ;
Kim, Hyun K. ;
Flexman, Molly ;
Altoe, Mirella ;
Campbell, Jessica A. ;
Hibshoosh, Hanina ;
Crew, Katherine D. ;
Kalinsky, Kevin ;
Hershman, Dawn L. ;
Hielscher, Andreas H. .
RADIOLOGY, 2018, 287 (03) :778-786
[10]   Magnetic Resonance Imaging Combined With Second-look Ultrasonography in Predicting Pathologic Complete Response After Neoadjuvant Chemotherapy in Primary Breast Cancer Patients [J].
Hayashi, Naoki ;
Tsunoda, Hiroko ;
Nomura, Maki ;
Ochi, Tomohiro ;
Suzuki, Koyu ;
Yamauchi, Hideko ;
Nakamura, Seigo .
CLINICAL BREAST CANCER, 2019, 19 (01) :71-77