Clean affinity matrix induced hyper-Laplacian regularization for unsupervised multi-view feature selection

被引:0
作者
Song, Peng [1 ]
Zhou, Shixuan [1 ]
Mu, Jinshuai [1 ]
Duan, Meng [1 ]
Yu, Yanwei [2 ]
Zheng, Wenming [3 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266400, Peoples R China
[3] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Peoples R China
关键词
Feature selection; Hypergraph regularization; Consistency and inconsistency; Multi-view learning; ADAPTIVE SIMILARITY; GRAPH; FACTORIZATION; PROJECTIONS; CONSENSUS;
D O I
10.1016/j.ins.2024.121276
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most previous unsupervised multi-view feature selection (UMFS) methods have achieved appealing performance by exploring the consistency among multiple views. However, they have the following shortcomings: (1) They often fail to consider the potential inconsistency that might be caused by view-specific characteristics from the perspective of sparsity. (2) The previously learned hyper-graph might be affected by noise, thereby reducing the quality of the generated graph. To tackle these issues, this paper proposes a clean affinity matrix induced hyper-Laplacian regularization (CAHR) method for UMFS. Firstly, the initial affinity matrix is decomposed into the consistent and inconsistent parts, then a novel diversity penalty term is introduced to enforce the sparsity of the inconsistent part across views, thereby making the consistent part be cleaner. Secondly, a unified affinity matrix is generated by fusing the consistent factors of the initial affinity matrix in a self-weighted manner, thereby considering the consistency of multi-view data. Based on the unified affinity matrix, a hyper-Laplacian matrix is further constructed, which can maintain high-order manifold structure of data. Finally, a loss function is designed to find the best mapping for feature selection. Comprehensive experiments demonstrate that the proposed method significantly outperforms several state-of-the-art UMFS methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Adaptive Similarity Embedding for Unsupervised Multi-View Feature Selection
    Wan, Yuan
    Sun, Shengzi
    Zeng, Cheng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (10) : 3338 - 3350
  • [22] Online unsupervised multi-view feature selection with adaptive neighbors
    Ai, Yihao
    Zhong, Guo
    Chen, Tingjian
    Yuan, Haoliang
    Lai, Loi Lei
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2025, 23 (01)
  • [23] Multi-view unsupervised complementary feature selection with multi-order similarity learning
    Cao, Zhiwen
    Xie, Xijiong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [24] High-order correlation preserved multi-view unsupervised feature selection
    Duan, Meng
    Song, Peng
    Zhou, Shixuan
    Cheng, Yuanbo
    Mu, Jinshuai
    Zheng, Wenming
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [25] Robust Multi-View Feature Selection
    Liu, Hongfu
    Mao, Haiyi
    Fu, Yun
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 281 - 290
  • [26] Multi-view Laplacian Sparse Feature Selection for Web Image Annotation
    Shi Caijuan
    Ruan Qiuqi
    An Gaoyun
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1026 - 1029
  • [27] Cluster structure preserving unsupervised feature selection for multi-view tasks
    Shi, Hong
    Li, Yin
    Han, Yahong
    Hu, Qinghua
    [J]. NEUROCOMPUTING, 2016, 175 : 686 - 697
  • [28] Low-rank tensor based smooth representation learning for multi-view unsupervised feature selection
    Wang, Changjia
    Song, Peng
    Duan, Meng
    Zhou, Shixuan
    Cheng, Yuanbo
    [J]. KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [29] Multi-view SVM Classification with Feature Selection
    Niu, Yuting
    Shang, Yuan
    Tian, Yingjie
    [J]. 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 405 - 412
  • [30] Multi-view Embedding with Adaptive Shared Output and Similarity for unsupervised feature selection
    Sun, Shengzi
    Wan, Yuan
    Zeng, Cheng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 165 : 40 - 52