Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer's disease detection via cerebrospinal fluid analysis

被引:0
|
作者
Conti, Francesco [1 ,2 ]
Banchelli, Martina [3 ]
Bessi, Valentina [4 ]
Cecchi, Cristina [5 ]
Chiti, Fabrizio [5 ]
Colantonio, Sara [1 ]
D'Andrea, Cristiano [3 ]
de Angelis, Marella [3 ]
Moroni, Davide [1 ]
Nacmias, Benedetta [4 ,6 ]
Pascali, Maria Antonietta [1 ]
Sorbi, Sandro [4 ,6 ]
Matteini, Paolo [3 ]
机构
[1] Italian Natl Res Council, Inst Informat Sci & Technol A Faedo, Via G Moruzzi 1, I-56124 Pisa, PI, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56126 Pisa, Italy
[3] CNR, Inst Appl Phys N Carrara, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Viale Pieraccini 6, I-50139 Florence, FI, Italy
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Viale Morgagni 50, I-50134 Florence, FI, Italy
[6] IRCCS Fdn Don Carlo Gnocchi, Via Scandicci 269, I-50143 Florence, FI, Italy
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Raman spectroscopy; Cerebrospinal fluid; Alzheimer's disease; Persistent homology; Topological data analysis; Topological machine learning; DIAGNOSIS;
D O I
10.1016/j.jfranklin.2024.107249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cerebrospinal fluid of 21 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 22 pathological controls has been collected and analysed by Raman spectroscopy (RS). We investigated whether the Raman spectra could be used to distinguish AD from controls, after a preprocessing procedure. We applied machine learning to a set of topological descriptors extracted from the spectra, achieving a high classification accuracy of 86%. Our experimentation indicates that RS and topological analysis may be a reliable and effective combination to confirm or disprove a clinical diagnosis of Alzheimer's disease. The following steps will aim at leveraging the intrinsic interpretability of the topological data analysis to characterize the AD subtypes, e.g. by identifying the bands of the Raman spectrum relevant for AD detection, possibly increasing and/or confirming the knowledge about the precise molecular events and biological pathways behind the Alzheimer's disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Raman spectroscopy and multivariate analysis as potential tool to follow Alzheimer's disease progression
    Carota, Angela Gilda
    Campanella, Beatrice
    Del Carratore, Renata
    Bongioanni, Paolo
    Giannelli, Roberta
    Legnaioli, Stefano
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (16) : 4667 - 4675
  • [42] Raman spectroscopy and multivariate analysis as potential tool to follow Alzheimer’s disease progression
    Angela Gilda Carota
    Beatrice Campanella
    Renata Del Carratore
    Paolo Bongioanni
    Roberta Giannelli
    Stefano Legnaioli
    Analytical and Bioanalytical Chemistry, 2022, 414 : 4667 - 4675
  • [43] Genome-wide meta-analysis for Alzheimer’s disease cerebrospinal fluid biomarkers
    Iris E. Jansen
    Sven J. van der Lee
    Duber Gomez-Fonseca
    Itziar de Rojas
    Maria Carolina Dalmasso
    Benjamin Grenier-Boley
    Anna Zettergren
    Aniket Mishra
    Muhammad Ali
    Victor Andrade
    Céline Bellenguez
    Luca Kleineidam
    Fahri Küçükali
    Yun Ju Sung
    Niccolo Tesí
    Ellen M. Vromen
    Douglas P. Wightman
    Daniel Alcolea
    Montserrat Alegret
    Ignacio Alvarez
    Philippe Amouyel
    Lavinia Athanasiu
    Shahram Bahrami
    Henri Bailly
    Olivia Belbin
    Sverre Bergh
    Lars Bertram
    Geert Jan Biessels
    Kaj Blennow
    Rafael Blesa
    Mercè Boada
    Anne Boland
    Katharina Buerger
    Ángel Carracedo
    Laura Cervera-Carles
    Geneviève Chene
    Jurgen A. H. R. Claassen
    Stephanie Debette
    Jean-Francois Deleuze
    Peter Paul de Deyn
    Janine Diehl-Schmid
    Srdjan Djurovic
    Oriol Dols-Icardo
    Carole Dufouil
    Emmanuelle Duron
    Emrah Düzel
    Tormod Fladby
    Juan Fortea
    Lutz Frölich
    Pablo García-González
    Acta Neuropathologica, 2022, 144 : 821 - 842
  • [44] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [45] Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer's disease
    Kang, Ju-Hee
    Vanderstichele, Hugo
    Trojanowski, John Q.
    Shaw, Leslie M.
    METHODS, 2012, 56 (04) : 484 - 493
  • [46] Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer's disease using Fluorescence Correlation Spectroscopy (FCS)
    Chatterjee, Madhurima
    Noeding, Bernd
    Willemse, Eline A. J.
    Koel-Simmelink, Marleen J. A.
    van der Fliere, Wiesje M.
    Schild, Detlev
    Teunissen, Charlotte E.
    CLINICAL BIOCHEMISTRY, 2017, 50 (18) : 1061 - 1066
  • [47] Machine Learning based Detection of Alzheimer's disease in MRI images
    Rajendiran, M.
    Kumar, K. P. Sanal
    Nair, S. Anu H.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1615 - 1625
  • [48] Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid
    Richens, Joanna L.
    Vere, Kelly-Ann
    Light, Roger A.
    Soria, Daniele
    Garibaldi, Jonathan
    Smith, A. David
    Warden, Donald
    Wilcock, Gordon
    Bajaj, Nin
    Morgan, Kevin
    O'Shea, Paul
    INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS, 2014, 5 (02): : 53 - 70
  • [49] Identification of Candidate Biomarkers of Alzheimer's Disease via Multiplex Cerebrospinal Fluid and Serum Proteomics
    Liu, Ping
    Li, Lingxiao
    He, Fangping
    Meng, Fanxia
    Liu, Xiaoyan
    Su, Yujie
    Su, Xinhui
    Luo, Benyan
    Peng, Guoping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [50] Topological Pattern Recognition of Severe Alzheimer's Disease via Regularized Supervised Learning of EEG Complexity
    Fan, Miaolin
    Yang, Albert C.
    Fuh, Jong-Ling
    Chou, Chun-An
    FRONTIERS IN NEUROSCIENCE, 2018, 12