Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer's disease detection via cerebrospinal fluid analysis

被引:0
|
作者
Conti, Francesco [1 ,2 ]
Banchelli, Martina [3 ]
Bessi, Valentina [4 ]
Cecchi, Cristina [5 ]
Chiti, Fabrizio [5 ]
Colantonio, Sara [1 ]
D'Andrea, Cristiano [3 ]
de Angelis, Marella [3 ]
Moroni, Davide [1 ]
Nacmias, Benedetta [4 ,6 ]
Pascali, Maria Antonietta [1 ]
Sorbi, Sandro [4 ,6 ]
Matteini, Paolo [3 ]
机构
[1] Italian Natl Res Council, Inst Informat Sci & Technol A Faedo, Via G Moruzzi 1, I-56124 Pisa, PI, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56126 Pisa, Italy
[3] CNR, Inst Appl Phys N Carrara, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Viale Pieraccini 6, I-50139 Florence, FI, Italy
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Viale Morgagni 50, I-50134 Florence, FI, Italy
[6] IRCCS Fdn Don Carlo Gnocchi, Via Scandicci 269, I-50143 Florence, FI, Italy
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Raman spectroscopy; Cerebrospinal fluid; Alzheimer's disease; Persistent homology; Topological data analysis; Topological machine learning; DIAGNOSIS;
D O I
10.1016/j.jfranklin.2024.107249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cerebrospinal fluid of 21 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 22 pathological controls has been collected and analysed by Raman spectroscopy (RS). We investigated whether the Raman spectra could be used to distinguish AD from controls, after a preprocessing procedure. We applied machine learning to a set of topological descriptors extracted from the spectra, achieving a high classification accuracy of 86%. Our experimentation indicates that RS and topological analysis may be a reliable and effective combination to confirm or disprove a clinical diagnosis of Alzheimer's disease. The following steps will aim at leveraging the intrinsic interpretability of the topological data analysis to characterize the AD subtypes, e.g. by identifying the bands of the Raman spectrum relevant for AD detection, possibly increasing and/or confirming the knowledge about the precise molecular events and biological pathways behind the Alzheimer's disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Dissecting IWG-2 typical and atypical Alzheimer's disease: insights from cerebrospinal fluid analysis
    Paterson, Ross W.
    Toombs, Jamie
    Slattery, Catherine F.
    Nicholas, Jennifer M.
    Andreasson, Ulf
    Magdalinou, Nadia K.
    Blennow, Kaj
    Warren, Jason D.
    Mummery, Cath J.
    Rossor, Martin N.
    Lunn, Michael P.
    Crutch, Sebastian J.
    Fox, Nick C.
    Zetterberg, Henrik
    Schott, Jonathan M.
    JOURNAL OF NEUROLOGY, 2015, 262 (12) : 2722 - 2730
  • [32] Machine Learning for Alzheimer's Disease Detection Based on Neuroimaging techniques: A Review
    Gharaibeh, Maha
    Elhies, Mwaffaq
    Almahmoud, Mothanna
    Abualigah, Sayel
    Elayan, Omar
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 426 - 431
  • [33] A Study on Machine Learning Models in Detecting Cognitive Impairments in Alzheimer's Patients Using Cerebrospinal Fluid Biomarkers
    Tiwari, Vivek K.
    Indic, Premananda
    Tabassum, Shawana
    AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS, 2024, 39
  • [34] Rapid Biomarker Screening of Alzheimer's Disease by Interpretable Machine Learning and Graphene-Assisted Raman Spectroscopy
    Wang, Ziyang
    Ye, Jiarong
    Zhang, Kunyan
    Ding, Li
    Granzier-Nakajima, Tomotaroh
    Ranasinghe, Jeewan C.
    Xue, Yuan
    Sharma, Shubhang
    Biase, Isabelle
    Terrones, Mauricio
    Choi, Se Hoon
    Ran, Chongzhao
    Tanzi, Rudolph E.
    Huang, Sharon X.
    Zhang, Can
    Huang, Shengxi
    ACS NANO, 2022, 16 (04) : 6426 - 6436
  • [35] Detection of Alzheimer's disease by displacement field and machine learning
    Zhang, Yudong
    Wang, Shuihua
    PEERJ, 2015, 3
  • [36] Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids
    Ficiara, Eleonora
    Boschi, Silvia
    Ansari, Shoeb
    D'Agata, Federico
    Abollino, Ornella
    Caroppo, Paola
    Di Fede, Giuseppe
    Indaco, Antonio
    Rainero, Innocenzo
    Guiot, Caterina
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [37] Copper in Alzheimer's Disease: A Meta-Analysis of Serum, Plasma, and Cerebrospinal Fluid Studies
    Bucossi, Serena
    Ventriglia, Mariacarla
    Panetta, Valentina
    Salustri, Carlo
    Pasqualetti, Patrizio
    Mariani, Stefania
    Siotto, Mariacristina
    Rossini, Paolo Maria
    Squitti, Rosanna
    JOURNAL OF ALZHEIMERS DISEASE, 2011, 24 (01) : 175 - 185
  • [38] Zinc in Alzheimer's Disease: A Meta-Analysis of Serum, Plasma, and Cerebrospinal Fluid Studies
    Ventriglia, Mariacarla
    Brewer, George J.
    Simonelli, Ilaria
    Mariani, Stefania
    Siotto, Mariacristina
    Bucossi, Serena
    Squitti, Rosanna
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 46 (01) : 75 - 87
  • [39] Fiber-enhanced Raman spectroscopy as a tool for an early detection of Alzheimer's disease biomarkers
    Eravuchira, P. J.
    Banchelli, M.
    D'Andrea, C.
    De Angelis, M.
    Matteini, P.
    Gannot, I.
    OPTICAL FIBERS AND SENSORS FOR MEDICAL DIAGNOSTICS AND TREATMENT APPLICATIONS XIX, 2019, 10872
  • [40] FTIR Spectroscopy of Cerebrospinal Fluid Reveals Variations in the Lipid: Protein Ratio at Different Stages of Alzheimer's Disease
    Depciuch, Joanna
    Zawlik, Izabela
    Skrzypa, Marzena
    Pajak, Justyna
    Potocka, Natalia
    Lach, Kornelia
    Bartosik-Psujek, Halina
    Koziorowska, Anna
    Kaznowska, Ewa
    Cebulski, Jozef
    JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (01) : 281 - 293