Harnessing topological machine learning in Raman spectroscopy: Perspectives for Alzheimer's disease detection via cerebrospinal fluid analysis

被引:0
|
作者
Conti, Francesco [1 ,2 ]
Banchelli, Martina [3 ]
Bessi, Valentina [4 ]
Cecchi, Cristina [5 ]
Chiti, Fabrizio [5 ]
Colantonio, Sara [1 ]
D'Andrea, Cristiano [3 ]
de Angelis, Marella [3 ]
Moroni, Davide [1 ]
Nacmias, Benedetta [4 ,6 ]
Pascali, Maria Antonietta [1 ]
Sorbi, Sandro [4 ,6 ]
Matteini, Paolo [3 ]
机构
[1] Italian Natl Res Council, Inst Informat Sci & Technol A Faedo, Via G Moruzzi 1, I-56124 Pisa, PI, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56126 Pisa, Italy
[3] CNR, Inst Appl Phys N Carrara, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Neurosci Psychol Drug Res & Child Hlth, Viale Pieraccini 6, I-50139 Florence, FI, Italy
[5] Univ Florence, Dept Expt & Clin Biomed Sci, Viale Morgagni 50, I-50134 Florence, FI, Italy
[6] IRCCS Fdn Don Carlo Gnocchi, Via Scandicci 269, I-50143 Florence, FI, Italy
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Raman spectroscopy; Cerebrospinal fluid; Alzheimer's disease; Persistent homology; Topological data analysis; Topological machine learning; DIAGNOSIS;
D O I
10.1016/j.jfranklin.2024.107249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cerebrospinal fluid of 21 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 22 pathological controls has been collected and analysed by Raman spectroscopy (RS). We investigated whether the Raman spectra could be used to distinguish AD from controls, after a preprocessing procedure. We applied machine learning to a set of topological descriptors extracted from the spectra, achieving a high classification accuracy of 86%. Our experimentation indicates that RS and topological analysis may be a reliable and effective combination to confirm or disprove a clinical diagnosis of Alzheimer's disease. The following steps will aim at leveraging the intrinsic interpretability of the topological data analysis to characterize the AD subtypes, e.g. by identifying the bands of the Raman spectrum relevant for AD detection, possibly increasing and/or confirming the knowledge about the precise molecular events and biological pathways behind the Alzheimer's disease.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Proteomic Analysis of Alzheimer's Disease Cerebrospinal Fluid from Neuropathologically Diagnosed Subjects
    Maarouf, Chera L.
    Andacht, Tracy M.
    Kokjohn, Tyler A.
    Castano, Eduardo M.
    Sue, Lucia I.
    Beach, Thomas G.
    Roher, Alex E.
    CURRENT ALZHEIMER RESEARCH, 2009, 6 (04) : 399 - 406
  • [22] Detection of Aβ40 in cerebrospinal fluid and plasma of Alzheimer's disease patients using photoelectrochemical biosensors
    Li, Liting
    Wei, Na
    Guo, Yiwei
    Zhu, Xingyu
    Wang, Lin
    Zhu, Yanzhao
    Fang, Ke
    Ma, Shenhui
    Zhang, Yingying
    Zhang, Yan
    Zhou, Xiaofei
    Zhao, Gang
    Bu, Yuyu
    Zhou, Linfu
    MICROCHIMICA ACTA, 2025, 192 (01)
  • [23] Immunocytochemical detection of anti-hippocampal antibodies in Alzheimer's disease and normal cerebrospinal fluid
    Loeffler, DA
    Juneau, PL
    Nguyen, HU
    Najman, D
    Pomara, N
    LeWitt, PA
    NEUROCHEMICAL RESEARCH, 1997, 22 (02) : 209 - 214
  • [24] Immunocytochemical Detection of Anti-Hippocampal Antibodies in Alzheimer's Disease and Normal Cerebrospinal Fluid
    David A. Loeffler
    Paul L. Juneau
    Hanh-Uyen Nguyen
    Dina Najman
    Nunzio Pomara
    Peter A. LeWitt
    Neurochemical Research, 1997, 22 : 209 - 214
  • [25] Towards development of a novel screening method for identifying Alzheimer's disease risk: Raman spectroscopy of blood serum and machine learning
    Ralbovsky, Nicole M.
    Fitzgerald, Greg S.
    McNay, Ewan C.
    Lednev, Igor K.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 254
  • [26] Fingerprinting Alzheimer's Disease by 1H Nuclear Magnetic Resonance Spectroscopy of Cerebrospinal Fluid
    Vignoli, Alessia
    Paciotti, Silvia
    Tenori, Leonardo
    Eusebi, Paolo
    Biscetti, Leonardo
    Chiasserini, Davide
    Scheltens, Philip
    Turano, Paola
    Teunissen, Charlotte
    Luchinat, Claudio
    Parnetti, Lucilla
    JOURNAL OF PROTEOME RESEARCH, 2020, 19 (04) : 1696 - 1705
  • [27] Recent advances in cerebrospinal fluid biomarkers for the detection of preclinical Alzheimer's disease
    Kulic, Luka
    Unschuld, Paul G.
    CURRENT OPINION IN NEUROLOGY, 2016, 29 (06) : 749 - 755
  • [28] Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer's disease in cerebrospinal fluid
    Song, Chao
    Deng, Pan
    Que, Long
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2018, 14 (06) : 1845 - 1852
  • [29] Use of cerebrospinal fluid biomarker analysis for improving Alzheimer's disease diagnosis in a non-specialized setting
    Malnar, Martina
    Kosicek, Marko
    Bene, Raphael
    Tarnik, Iva Petek
    Pavelin, Sanda
    Babic, Ivana
    Brajenovic-Milic, Bojana
    Hecimovic, Hrvoje
    Titlic, Marina
    Trkanjec, Zlatko
    Demarin, Vida
    Hecimovic, Silva
    ACTA NEUROBIOLOGIAE EXPERIMENTALIS, 2012, 72 (03) : 264 - 271
  • [30] Analysis of Cerebrospinal Fluid and [11C] PIB PET Biomarkers for Alzheimer's Disease with Updated Protocols
    Wang, Min Jeong
    Yi, Sang Hak
    Han, Jee-young
    Park, So Young
    Jang, Jae-Won
    Chun, In Kook
    Van Giau, Vo
    Bagyinszky, Eva
    Lim, Kun Taek
    Kang, Sung Min
    An, Seong Soo A.
    Park, Young Ho
    Youn, Young Chul
    Kim, Sang Yun
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 52 (04) : 1403 - 1413