An Optimization Method for Coupled-Line Bandpass Filters Using Transformer-Based Estimator and Multilayer Perceptron

被引:0
作者
Xu, Kai-Da [1 ]
Tian, Jing [1 ]
Cai, Yijun [2 ]
Li, Daotong [3 ]
Wu, Wen [4 ]
Chen, Qiang [4 ]
机构
[1] Jiaotong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] Xiamen Univ Technol, Fujian Prov Key Lab Optoelect Technol & Devices, Xiamen 361024, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[4] Tohoku Univ, Dept Commun Engn, Sendai 9808579, Japan
关键词
Structural engineering; Scattering parameters; Band-pass filters; Artificial neural networks; Microwave filters; Transformers; Optimization; Bandpass filters; genetic algorithm; multilayer perceptron; structural parameters; transformer; ARTIFICIAL NEURAL-NETWORKS; MICROWAVE CIRCUITS; DESIGN;
D O I
10.1109/TCSII.2024.3380412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimation and optimizing structural parameters of coupled-line bandpass filters (BPFs) using transformer-based estimator (TBE) and multilayer perceptron (MLP) is proposed. Once trained, the TBE can quickly obtain the predicted values of the BPF structural parameters from desired S-parameters, while the trained MLP can replace the time-consuming electromagnetic (EM) simulation process, and establish the mapping from structural parameters to S-parameters. In order to obtain the optimal structural parameters, the trained MLP is combined with genetic algorithm (GA) for fast optimization. To demonstrate the effectiveness of the proposed method, a BPF using three pairs of coupled-line microstrip structure is designed and fabricated. The experimental results demonstrate that the proposed method can quickly and accurately obtain the optimal structural parameters from the desired frequency response of the coupled-line BPF.
引用
收藏
页码:4136 / 4140
页数:5
相关论文
共 17 条
[11]  
Sun J.-J., 2018, P IEEE INT C COMP EL, P1
[12]   Reverse modeling of microwave circuits with bidirectional neural network models [J].
Vai, MM ;
Wu, SI ;
Li, B ;
Prasad, S .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (10) :1492-1494
[13]  
Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, 10.48550/arXiv.1706.03762, DOI 10.48550/ARXIV.1706.03762]
[14]   Effective design of cross-coupled filter using neural networks and coupling matrix [J].
Wang, Ying ;
Yu, Ming ;
Kabir, Humayun ;
Zhang, Qi-jun .
2006 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-5, 2006, :1431-+
[15]   High-Selectivity Wideband Bandpass Filter Using Simple Coupled Lines With Multiple Transmission Poles and Zeros [J].
Xu, Kai-Da ;
Li, Donghao ;
Liu, Yanhui .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (02) :107-109
[16]   Multivalued Neural Network Inverse Modeling and Applications to Microwave Filters [J].
Zhang, Chao ;
Jin, Jing ;
Na, Weicong ;
Zhang, Qi-Jun ;
Yu, Ming .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (08) :3781-3797
[17]   Artificial neural networks for RF and microwave design - From theory to practice [J].
Zhang, QJ ;
Gupta, KC ;
Devabhaktuni, VK .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (04) :1339-1350