An Optimization Method for Coupled-Line Bandpass Filters Using Transformer-Based Estimator and Multilayer Perceptron

被引:0
作者
Xu, Kai-Da [1 ]
Tian, Jing [1 ]
Cai, Yijun [2 ]
Li, Daotong [3 ]
Wu, Wen [4 ]
Chen, Qiang [4 ]
机构
[1] Jiaotong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] Xiamen Univ Technol, Fujian Prov Key Lab Optoelect Technol & Devices, Xiamen 361024, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[4] Tohoku Univ, Dept Commun Engn, Sendai 9808579, Japan
关键词
Structural engineering; Scattering parameters; Band-pass filters; Artificial neural networks; Microwave filters; Transformers; Optimization; Bandpass filters; genetic algorithm; multilayer perceptron; structural parameters; transformer; ARTIFICIAL NEURAL-NETWORKS; MICROWAVE CIRCUITS; DESIGN;
D O I
10.1109/TCSII.2024.3380412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimation and optimizing structural parameters of coupled-line bandpass filters (BPFs) using transformer-based estimator (TBE) and multilayer perceptron (MLP) is proposed. Once trained, the TBE can quickly obtain the predicted values of the BPF structural parameters from desired S-parameters, while the trained MLP can replace the time-consuming electromagnetic (EM) simulation process, and establish the mapping from structural parameters to S-parameters. In order to obtain the optimal structural parameters, the trained MLP is combined with genetic algorithm (GA) for fast optimization. To demonstrate the effectiveness of the proposed method, a BPF using three pairs of coupled-line microstrip structure is designed and fabricated. The experimental results demonstrate that the proposed method can quickly and accurately obtain the optimal structural parameters from the desired frequency response of the coupled-line BPF.
引用
收藏
页码:4136 / 4140
页数:5
相关论文
共 17 条
  • [1] Hendrycks D, 2020, Arxiv, DOI arXiv:1606.08415
  • [2] An Overview of Neural Network Techniques for Microwave Inverse Modeling
    Jin, Jing
    Feng, Feng
    Zhang, Qi-Jun
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2021,
  • [3] Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters
    Jin, Jing
    Zhang, Chao
    Feng, Feng
    Na, Weicong
    Ma, Jianguo
    Zhang, Qi-Jun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (10) : 4140 - 4155
  • [4] Neural network inverse modeling and applications to microwave filter design
    Kabir, Humayun
    Wang, Ying
    Yu, Ming
    Zhang, Qi-Jun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (04) : 867 - 879
  • [5] Kingma D.P., 2015, P 3 INT C LEARN REPR, P13
  • [6] Liu W., 2016, P IEEE MTT S INT C N, P1
  • [7] A Novel Deep-Q-Network-Based Fine-Tuning Approach for Planar Bandpass Filter Design
    Ohira, Masataka
    Takano, Kohei
    Ma, Zhewang
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (06) : 638 - 641
  • [8] Ohira M, 2017, IEEE MTT S INT MICR, P1628, DOI 10.1109/MWSYM.2017.8058947
  • [9] EM-based optimization of microwave circuits using artificial neural networks:: The state-of-the-art
    Rayas-Sánchez, JE
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (01) : 420 - 435
  • [10] Parametric Modeling of Microwave Passive Components Using Sensitivity-Analysis-Based Adjoint Neural-Network Technique
    Sadrossadat, Sayed Alireza
    Cao, Yazi
    Zhang, Qi-Jun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (05) : 1733 - 1747