LIMIT THEOREMS AND WRAPPING TRANSFORMS IN BI-FREE PROBABILITY THEORY

被引:0
作者
Hasebe, Takahiro [1 ]
Huang, Hao-Wei [2 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Japan
[2] Natl Tsinghua Univ, Dept Math, Hsinchu, Taiwan
关键词
infinite divisibility; multiplicative convolution; wrapping transformation; COMBINATORIAL APPROACH; PAIRS; LAWS;
D O I
10.2140/pjm.2024.329.63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize idempotent distributions with respect to the bi-free multiplicative convolution on the bi-torus. The bi-free analogous L & eacute;vy triplet of an infinitely divisible distribution on the bi-torus without nontrivial idempotent factors is obtained. This triplet is unique and generates a homomorphism from the bi-free multiplicative semigroup of infinitely divisible distributions to the classical one. Also, the relevances of the limit theorems associated with measures induced by the wrapping map from the plane to the bi-torus.
引用
收藏
页数:45
相关论文
共 23 条
[1]   Portmanteau theorem for unbounded measures [J].
Barczy, Matyas ;
Pap, Gyula .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (17) :1831-1835
[2]   Hincin's theorem for multiplicative free convolution [J].
Belinschi, S. T. ;
Bercovici, H. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (01) :26-31
[3]   Stable laws and domains of attraction in free probability theory [J].
Bercovici, H ;
Pata, V .
ANNALS OF MATHEMATICS, 1999, 149 (03) :1023-1060
[4]   LEVY-HINCIN TYPE THEOREMS FOR MULTIPLICATIVE AND ADDITIVE FREE CONVOLUTION [J].
BERCOVICI, H ;
VOICULESCU, D .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 153 (02) :217-248
[5]   FREE CONVOLUTION OF MEASURES WITH UNBOUNDED SUPPORT [J].
BERCOVICI, H ;
VOICULESCU, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :733-773
[6]   MATRICIAL MODEL FOR THE FREE MULTIPLICATIVE CONVOLUTION [J].
Cebron, Guillaume .
ANNALS OF PROBABILITY, 2016, 44 (04) :2427-2478
[7]   On Two-faced Families of Non-commutative Random Variables [J].
Charlesworth, Ian ;
Nelson, Brent ;
Skoufranis, Paul .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (06) :1290-1325
[8]   Combinatorics of Bi-Freeness with Amalgamation [J].
Charlesworth, Ian ;
Nelson, Brent ;
Skoufranis, Paul .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :801-847
[9]   Limit theorems in free probability theory II [J].
Chistyakov, Gennadii P. ;
Goetze, Friedrich .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (01) :87-117
[10]  
Hasebe T., Limit theorems for infinitesimal triangular arrays and uniqueness of Lcvy measures on tori