Degenerate Cahn-Hilliard systems: From nonlocal to local

被引:2
作者
Carrillo, Jose A. [1 ]
Elbar, Charles [2 ]
Skrzeczkowski, Jakub [1 ,3 ]
机构
[1] Univ Oxford, Math Inst, Wood stock Rd, Oxford OX2 6GG, England
[2] Sorbonne Univ, Fac Sci & Ingn, Lab Jacques Louis Lions LJLL, 4 Pl JussieuF, F-75005 Paris, France
[3] Univ Warsaw, Fac Math Informat & Mech, Stefana Banacha, Warsaw PL-202097, Poland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Degenerate Cahn-Hilliard equation; nonlocal Cahn-Hilliard equation; aggregation-diffusion; singular limit; AGGREGATION-DIFFUSION EQUATIONS; FINITE-VOLUME SCHEMES; FULLY DISCRETE; FLOW; MODEL; LIMIT; MAPS;
D O I
10.1142/S021919972450041X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a rigorous mathematical framework to establish the limit of a nonlocal model of cell-cell adhesion system to a local model. When the parameter of the nonlocality goes to 0, the system tends to a Cahn-Hilliard system with degenerate mobility and cross-interaction forces. Our analysis relies on a-priori estimates and compactness properties.
引用
收藏
页数:31
相关论文
共 55 条
[31]  
Dull C., 2022, CAMBRIDGE MONOGRAPHS, V36
[32]   Degenerate Cahn-Hilliard equation: From nonlocal to local [J].
Elbar, Charles ;
Skrzeczkowski, Jakub .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 :576-611
[33]  
Elbar C, 2022, COMMUN MATH SCI, V20, P1901
[34]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423
[35]   Solutions to aggregation-diffusion equations with nonlinear mobility constructed via a deterministic particle approximation [J].
Fagioli, Simone ;
Radici, Emanuela .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (09) :1801-1829
[36]   A LOCAL CONTINUUM MODEL OF CELL-CELL ADHESION [J].
Falco, C. ;
Baker, R. E. ;
Carrillo, J. A. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (03) :S17-S42
[37]   Minimizing movement for a fractional porous medium equation in a periodic setting [J].
Ferreira, L. C. F. ;
Santos, M. C. ;
Valencia-Guevara, J. C. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 153 :86-117
[38]   Periodic solutions for a 1D-model with nonlocal velocity via mass transport [J].
Ferreira, Lucas C. F. ;
Valencia-Guevara, Julio C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) :7093-7114
[39]   Formation of clumps and patches in self-aggregation of finite-size particles [J].
Holm, Darryl D. ;
Putkaradze, Vakhtang .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (02) :183-196
[40]   Mean field limit and propagation of chaos for Vlasov systems with bounded forces [J].
Jabin, Pierre-Emmanuel ;
Wang, Zhenfu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (12) :3588-3627