Degenerate Cahn-Hilliard systems: From nonlocal to local

被引:2
作者
Carrillo, Jose A. [1 ]
Elbar, Charles [2 ]
Skrzeczkowski, Jakub [1 ,3 ]
机构
[1] Univ Oxford, Math Inst, Wood stock Rd, Oxford OX2 6GG, England
[2] Sorbonne Univ, Fac Sci & Ingn, Lab Jacques Louis Lions LJLL, 4 Pl JussieuF, F-75005 Paris, France
[3] Univ Warsaw, Fac Math Informat & Mech, Stefana Banacha, Warsaw PL-202097, Poland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Degenerate Cahn-Hilliard equation; nonlocal Cahn-Hilliard equation; aggregation-diffusion; singular limit; AGGREGATION-DIFFUSION EQUATIONS; FINITE-VOLUME SCHEMES; FULLY DISCRETE; FLOW; MODEL; LIMIT; MAPS;
D O I
10.1142/S021919972450041X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a rigorous mathematical framework to establish the limit of a nonlocal model of cell-cell adhesion system to a local model. When the parameter of the nonlocality goes to 0, the system tends to a Cahn-Hilliard system with degenerate mobility and cross-interaction forces. Our analysis relies on a-priori estimates and compactness properties.
引用
收藏
页数:31
相关论文
共 55 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]   A continuum approach to modelling cell-cell adhesion [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (01) :98-113
[3]   Unconditional Bound-Preserving and Energy-Dissipating Finite-Volume Schemes for the Cahn-Hilliard Equation [J].
Bailo, Rafael ;
Carrillo, Jose A. ;
Kalliadasis, Serafim ;
Perez, Sergio P. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (03) :713-748
[4]   BOUND-PRESERVING FINITE-VOLUME SCHEMES FOR SYSTEMS OF CONTINUITY EQUATIONS WITH SATURATION [J].
Bailo, Rafael ;
Carrillo, Jose A. ;
Hu, Jingwei .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (03) :1315-1339
[5]   Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations [J].
Bailo, Rafael ;
Carrillo, Jose A. ;
Murakawa, Hideki ;
Schmidtchen, Markus .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (13) :2487-2522
[6]  
Bailo R, 2020, COMMUN MATH SCI, V18, P1259
[7]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[8]   Lp Theory for the Multidimensional Aggregation Equation [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Rosado, Jesus .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :45-83
[9]   Blow-up in multidimensional aggregation equations with mildly singular interaction kernels [J].
Bertozzi, Andrea L. ;
Carrillo, Jose A. ;
Laurent, Thomas .
NONLINEARITY, 2009, 22 (03) :683-710
[10]  
Boi S., 2000, Nonlinear Analysis: Real World Application, V1, P163, DOI 10.1016/S0362-546X(99)00399-5