Ba2+ doping into Ni/Al2O3 nanofibers promotes CO2 methanation via alkaline modulation

被引:6
作者
Zhang, Mengyuan [1 ,2 ]
Lu, Xiaoyan [1 ]
Qu, Ying [1 ]
He, Chuandong [1 ]
Dong, Jiali [1 ]
Luo, Kongliang [1 ]
Ye, Jian [1 ]
Lu, Nana [1 ]
Niu, Qiang [1 ,3 ]
Zhang, Pengfei [1 ,2 ]
Dai, Sheng [4 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Inner Mongolia Erdos Elect Power & Met Grp Co Ltd, Natl Enterprise Technol Ctr, Ordos 016064, Inner Mongolia, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN USA
基金
中国国家自然科学基金;
关键词
Ba2+ doping; CO2 adsorption capacity; Nanofiber; CO2; methanation; DFT calculations; OXYGEN VACANCIES; SURFACE; HYDROGENATION; CATALYSTS;
D O I
10.1016/j.cej.2024.154872
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ni-based catalysts are promising catalysts for CO2 methanation due to low lost. However, the activity and selectivity of Ni-based catalysts in CO2 methanation at low temperatures still need to be improved. Here, Ni4Al2BamOx (m = 0-0.5) nanofibers were prepared. Doping Ba2+ would increase alkaline sites and facilitate generating oxygen vacancies. Especially, Ni4Al2Ba0.2Ox exhibited the high specific surface area with 127.1 m(2) g(-1), being potential for exposing more active sites. Indeed, compared with undoped Ni4Al2Ox catalysts (CO2 conv. = 45 %, CH4 select. = 92 % at 300 degrees C), Ba2+ doping significantly improved activity (CO2 conv. = 74 %, CH4 select. = 99% at 300 degrees C) and stability within 200 h for Ni(4)Al(2)Ba(0.2)Ox. Both EPR and O-1S XPS confirmed that Ni(4)Al(2)Ba(0.2)Ox can form more oxygen vacancies and CO2-TPD confirmed that Ni(4)Al(2)Ba(0.2)Ox had stronger CO2 adsorption capacity compared to Ni4Al2Ox. In-situ infrared spectroscopy and DFT calculations both indicated that Ba2+ doping can promote generating surface hydroxyl groups and formate pathways.
引用
收藏
页数:12
相关论文
共 46 条
[21]   Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit [J].
Jiang, Haoyang ;
Wang, Linyu ;
Kaneko, Hiroaki ;
Gu, Rongtian ;
Su, Guangxu ;
Li, Le ;
Zhang, Jin ;
Song, Hucheng ;
Zhu, Feng ;
Yamaguchi, Akira ;
Xu, Jun ;
Liu, Fanxin ;
Miyauchi, Masahiro ;
Ding, Weiping ;
Zhong, Miao .
NATURE CATALYSIS, 2023, 6 (06) :519-530
[22]   Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO2 Capture by First-Principles Calculations and Molecular Simulations [J].
Lan, Jianhui ;
Cao, Dapeng ;
Wang, Wenchuan ;
Smit, Berend .
ACS NANO, 2010, 4 (07) :4225-4237
[23]   Oxygen Vacancy Enhanced Proton Transfer to Boost Carbamate Decomposition Kinetics with Tunable Heterostructure Ni/NiO [J].
Li, Xing ;
Xing, Lei ;
Zhan, Guoxiong ;
Huang, Zhoulan ;
Chen, Zhen ;
Chang, Huazhen ;
Li, Junhua .
ACS CATALYSIS, 2024, 14 (02) :1083-1092
[24]   Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity [J].
Liang, Chuanfei ;
Hu, Xun ;
Wei, Tao ;
Jia, Peng ;
Zhang, Zhanming ;
Dong, Dehua ;
Zhang, Shu ;
Liu, Qing ;
Hu, Guangzhi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (16) :8197-8213
[25]   Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation [J].
Mateo, Diego ;
Albero, Josep ;
Garcia, Hermenegildo .
JOULE, 2019, 3 (08) :1949-1962
[26]   From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability [J].
Mota, Filipe Marques ;
Kim, Dong Ha .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (01) :205-259
[27]   Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 [J].
Muller, DA ;
Nakagawa, N ;
Ohtomo, A ;
Grazul, JL ;
Hwang, HY .
NATURE, 2004, 430 (7000) :657-661
[28]   Why is calcium an effective promoter for plasma CO2 methanation over polymer P123-modified NiMgAlOx-mixed oxide catalysts? [J].
Nguyen-Quang, Minh ;
Azzolina-Jury, Federico ;
Samojeden, Bogdan ;
Motak, Monika ;
Da Costa, Patrick .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 336
[29]   Ca doping effect on the performance of La1-xCa xNiO3/CeO2-derived dual function materials for CO2 capture and hydrogenation to methane [J].
Onrubia-Calvo, Jon A. ;
Bermejo-Lopez, A. ;
Pereda-Ayo, B. ;
Gonzalez-Marcos, Jose A. ;
Gonzalez-Velasco, Juan R. .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
[30]   Spinel-structured nanocatalysts: New opportunities for CO2 hydrogenation to value-added chemicals [J].
Orege, Joshua Iseoluwa ;
Wei, Jian ;
Ge, Qingjie ;
Sun, Jian .
NANO TODAY, 2023, 51