Constructions of rotation symmetric Boolean functions satisfying almost all cryptographic criteria

被引:0
作者
Sun, Lei [1 ,2 ]
Shi, Zexia [3 ]
Liu, Jian [4 ]
Fu, Fang-Wei [5 ]
机构
[1] Hebei Univ Econ & Business, Sch Management Sci & Informat Engn, Shijiazhuang 050061, Peoples R China
[2] Hebei Univ Econ & Business, Hebei Cross Border Ecommerce Technol Innovat Ctr, Shijiazhuang 050061, Peoples R China
[3] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050010, Peoples R China
[4] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotation symmetric Boolean functions; Resilient; Strict avalanche criterion; Nonlinearity; Algebraic degree; Stream cipher; BENT FUNCTIONS; NONLINEARITY; VARIABLES; NUMBER;
D O I
10.1016/j.tcs.2024.114869
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Constructions of Boolean functions with various cryptographic properties have always been an important challenge in cryptography. This paper proposes systematic constructions of even- variable rotation symmetric Boolean functions satisfying almost all cryptographic criteria, that is, resiliency, optimal algebraic degree, strict avalanche criterion, high nonlinearity, nonexistence of nonzero linear structures, good global avalanche characteristics. Moreover, some of the constructions also have high algebraic immunity. This is the first time that Boolean functions having such cryptographic properties are obtained, which can be considered as good candidates for the design of real-life encryption schemes.
引用
收藏
页数:12
相关论文
共 33 条
  • [1] PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION
    BENNETT, CH
    BRASSARD, G
    ROBERT, JM
    [J]. SIAM JOURNAL ON COMPUTING, 1988, 17 (02) : 210 - 229
  • [2] Carlet C., 2021, BOOLEAN FUNCTIONS CR
  • [3] Algebraic immunity for cryptographically significant Boolean functions: Analysis and construction
    Carlet, Claude
    Dalai, Deepak Kumar
    Gupta, Kishan Chand
    Maitra, Subhamoy
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3105 - 3121
  • [4] A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions
    Carlet, Claude
    Gao, Guangpu
    Liu, Wenfen
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 127 : 161 - 175
  • [5] Quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 343 : 91 - 105
  • [6] Courtois NT, 2003, LECT NOTES COMPUT SC, V2729, P176
  • [7] Cusick TW, 2009, CRYPTOGRAPHIC BOOLEAN FUNCTIONS AND APPLICATIONS, P1
  • [8] Using easy coefficients conjecture for rotation symmetric Boolean functions
    Cusick, Thomas W.
    [J]. INFORMATION SCIENCES, 2024, 659
  • [9] Results on rotation symmetric bent functions
    Dalai, Deepak K.
    Maitra, Subhomoy
    Sarkar, Sumanta
    [J]. DISCRETE MATHEMATICS, 2009, 309 (08) : 2398 - 2409
  • [10] Constructions of 2-resilient rotation symmetric Boolean functions with odd number of variables
    Du, Jiao
    Li, Lin
    Fu, Shaojing
    Qu, Longjiang
    Li, Chao
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 991