Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger-Poisson system

被引:0
作者
Du, Xin [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger-Poisson system; infinitely many sign-changing solutions; invariant sets of descending flow; perturbation method; SCHRODINGER-POISSON EQUATIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; RADIAL SOLUTIONS; NODAL SOLUTIONS;
D O I
10.1080/17476933.2024.2372100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the quasilinear Schr & ouml;dinger-Poisson system {-Delta u + V(x)u + phi u - [Delta(1 + u(2))(1/2)]u/2(1 + u(2))(1/2 )= f(u) in R-3, -Delta phi = u(2 )in R-3, where V is a given coercive potential and the nonlinearity includes pure power type such as f(u) = |u|(p-2)u with p > 8 - 2 root 6. Firstly, we study the case of p > 4, and prove existence and multiplicity of sign-changing solutions through the method of invariant sets of descending flow. Then we study the case of 8 - 2 root 6 < p <= 4 and obtain a similar result by making use of the perturbation method.
引用
收藏
页数:41
相关论文
共 43 条
  • [1] Ambrosetti A., 2006, Perturbation Methods and Semilinear Elliptic Problems on Rn, DOI DOI 10.1007/3-7643-7396-2
  • [2] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791
  • [3] Nodal solutions of a p-Laplacian equation
    Bartsch, T
    Liu, ZL
    Weth, T
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 129 - 152
  • [4] EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N)
    BARTSCH, T
    WANG, ZQ
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) : 1725 - 1741
  • [5] Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
  • [6] Multiplicity of sign-changing solutions for Kirchhoff-type equations
    Cassani, Daniele
    Liu, Zhisu
    Tarsi, Cristina
    Zhang, Jianjun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 145 - 161
  • [7] Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system
    Chen, Jianqing
    Zhang, Qian
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [8] NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA
    CHEN, XL
    SUDAN, RN
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (14) : 2082 - 2085
  • [9] Existence of positive solutions for a quasilinear Schrodinger equation
    Chu, Changmu
    Liu, Haidong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 118 - 127
  • [10] Solutions for a quasilinear Schrodinger equation: a dual approach
    Colin, M
    Jeanjean, L
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) : 213 - 226