In-situ construction of g-C3N4/LaPO4 3 N 4 /LaPO 4 S-scheme heterostructure with nitrogen vacancy for boosting photocatalytic reduction of CO2 2

被引:0
|
作者
Bai, Shuan [1 ]
Zhang, Feipeng [2 ]
Zhang, Yanfeng [1 ]
机构
[1] Hebei Normal Univ, Coll Chem & Mat Sci, Natl Demonstrat Ctr Expt Chem Educ, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China
[2] Henan Univ Urban Construct, Coll Math & Phys, Pingdingshan 467036, Peoples R China
关键词
S -scheme heterojunctions; Nitrogen vacancy; CO; 2; reduction; Photocatalytic mechanism; CARBON NITRIDE NANOSHEETS; HETEROJUNCTION; TIO2; PHOTOREDUCTION;
D O I
10.1016/j.jallcom.2024.176137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is a realizable way to enhance the performance of photocatalytic reduction of carbon dioxide by constructing Sscheme heterojunctions due to its unique interfacial structures. In this article, g-C3N4/LaPO4 heterojunctions with surface nitrogen vacancies were prepared by in-situ one-pot hydrothermal method. The experimental results show that the generation rate of carbon monoxide produced via the best g-C3N4/LaPO4 heterojunction is 145.8 mu mol g- 1 h- 1, which is 4.0 times and 11.2 times as large as pure g-C3N4 and LaPO4, respectively. The heterojunction structure is characterized by UPS, in situ XPS and DFT calculation. The construction of S-scheme heterojunction can efficiently promote the separation of photogenerated electron holes and improve the redox capacity to boost photocatalytic activity. Furthermore, nitrogen vacancy in g-C3N4/LaPO4 heterojunction could provide more reaction active sites, which is conductive to the absorption, distribution and activation of CO2 and H2O molecules. In summary, this advancement opens up a promising avenue for the development of more potent photocatalysts, offering potential solutions for environmental and energy-related applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction
    Li, Mengli
    Zhang, Lingxia
    Fan, Xiangqian
    Wu, Meiying
    Wang, Min
    Cheng, Ruolin
    Zhang, Linlin
    Yao, Heliang
    Shi, Jianlin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 201 : 629 - 635
  • [2] In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction
    Qin, Jianyu
    An, Yuejiao
    Zhang, Yanfeng
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (12)
  • [3] S-scheme Porous g-C3N4/Ag2MoO4 Heterojunction Composite for CO2 Photoreduction
    Wang, Zhongliao
    Liu, Ruilian
    Zhang, Jinfeng
    Dai, Kai
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2022, 41 (06) : 2206015 - 2206022
  • [4] Interface modification by defect engineering for g-C3N4/LaPO4-x nanorods towards efficient CO2 photoreduction
    Yan, Sai
    Chen, Lei
    Peng, Fangyu
    Fan, Yuanyuan
    Yu, Yanlong
    Liu, Yue
    Cao, Yaan
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (39) : 18776 - 18786
  • [5] Enhancing CO2 photoreduction by construction of g-C3N4/Co-MOFs S-scheme heterojunction
    Sabir, Muhammad
    Sayed, Mahmoud
    Zeng, Zhuofan
    Cheng, Bei
    Wang, Wang
    Wang, Chuanbin
    Xu, Jingsan
    Cao, Shaowen
    APPLIED SURFACE SCIENCE, 2025, 693
  • [6] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [7] Boosting the photocatalytic CO2 reduction activity of g-C3N4 by acid modification
    Li, Zhou
    Ao, Junlang
    Wang, Zhi
    Huang, Zibin
    Xu, Zhihua
    Wu, Xiaofeng
    Cheng, Zhenmin
    Lv, Kangle
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 338
  • [8] Dual 2D CuSe/g-C3N4 heterostructure for boosting electrocatalytic reduction of CO2
    Zhang, Hao
    Ouyang, Tianwei
    Li, Jiamin
    Mu, Manman
    Yin, Xiaohong
    ELECTROCHIMICA ACTA, 2021, 390
  • [9] In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity
    Qiao, Qing
    Huang, Wei-Qing
    Li, Yuan-Yuan
    Li, Bo
    Hu, Wangyu
    Peng, Wei
    Fan, Xiaoxing
    Huang, Gui-Fang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) : 15882 - 15894
  • [10] In situ synthesis of g-C3N4/Ag@Ag3PO4 S-scheme heterostructure with tandem ohmic- and d-p bond-junction for photocatalytic reduction of CO2
    Qin, Jianyu
    Zhao, Mengyue
    Zhang, Yanfeng
    Shen, Jinni
    Wang, Xuxu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353