Cerebral Microcirculation: Progress and Outlook of Laser Doppler Flowmetry in Neurosurgery and Neurointensive Care

被引:1
作者
Wardell, Karin [1 ]
Richter, Johan [1 ,2 ,3 ]
Zsigmond, Peter [2 ,3 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[2] Linkoping Univ, Dept Neurosurg, Linkoping, Sweden
[3] Linkoping Univ, Dept Biomed & Clin Sci, Linkoping, Sweden
关键词
human brain; intraoperative guidance; laser Doppler flowmetry (LDF); microvascular blood flow; NEAR-INFRARED PROBE; BLOOD-FLOW; OPTICAL MEASUREMENTS; COMATOSE PATIENTS; PERFUSION; SURGERY; LOCALIZATION; FLUORESCENCE; SPECTROSCOPY; REFLECTANCE;
D O I
10.1111/micc.12884
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Laser Doppler flowmetry (LDF) is a well-established technique for the investigation of tissue microcirculation. Compared to skin, the use in the human brain is sparse. The measurement of cerebral microcirculation in neurointensive care and during neurosurgery is challenging and requires adaptation to the respective clinical setting. The aim of the review is to present state of the art and progress in neurosurgery and neurointensive care where LDF has proven useful and can find clinical importance in the investigation of cerebral microcirculation. The literature in the field is summarized and recent technical improvements regarding LDF systems and fiber optical probe designs for neurosurgical and neurocritical care described. By combining two signals from the LDF unit, the measurement of the microcirculation (Perfusion) and gray whiteness (TLI) of the brain tissue, the full potential of the device is achieved. For example, a forward-looking LDF-probe detects high-risk hemorrhage areas and gray-white matter boundaries along intraoperative trajectories during stereotactic neurosurgery. Proof of principles are given for LDF as a guidance tool in deep brain stimulation implantation, brain tumor needle biopsies, and as long-term monitoring device in neurocritical care. With well-designed fiber optical probes, surgical fixation, and signal processing for movement reduction, LDF monitoring of the cerebral microcirculation is successful up to 10 days. The use of LDF can be combined with other physiological measurement techniques, for example, fluorescence spectroscopy for identification of glioblastoma during tumor surgery. Fiber optics can also be used during magnetic resonance imaging (MRI). Despite the many advantages, fiber optical LDF has not yet reached its full potential in clinical neuro-applications. Multicenter studies are required to further evaluate LDF in neurosurgery and neurointensive care. In conclusion, the present status of LDF in neurosurgery and neurointensive care has been reviewed. By combining Perfusion and TLI with tailored probe designs the full potential of LDF can be achived in measuring cerebral microcirculation. This includes guidance during DBS implantation and needle biopsies, and long-term monitoring in neurocritical care.
引用
收藏
页数:12
相关论文
共 71 条
[1]   In-vivo reflection spectroscopy measurements in pig brain during stereotactic surgery [J].
Antonsson, J ;
Eriksson, O ;
Wårdell, K .
ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS, 2003, 4958 :242-250
[2]   Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation [J].
Antonsson, Johan ;
Eriksson, Ola ;
Blomstedt, Patric ;
Bergenheim, A. Tommy ;
Hariz, Marwan I. ;
Richter, Johan ;
Zsigmond, Peter ;
Wardell, Karin .
JOURNAL OF NEURAL ENGINEERING, 2008, 5 (02) :185-190
[3]  
Arbit E, 1996, NEUROSURG CLIN N AM, V7, P741
[4]  
BOLOGNESE P, 1993, J NEUROSURG ANESTH, V5, P151
[5]   Transcranial Doppler ultrasonography in neurological surgery and neurocritical care [J].
Bonow, Robert H. ;
Young, Christopher C. ;
Bass, David, I ;
Moore, Anne ;
Levitt, Michael R. .
NEUROSURGICAL FOCUS, 2019, 47 (06) :1-8
[6]   CORRELATION OF LASER DOPPLER WAVE PATTERNS WITH UNDERLYING MICROVASCULAR ANATOMY [J].
BRAVERMAN, IM ;
KEH, A ;
GOLDMINZ, D .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1990, 95 (03) :283-286
[7]   TOPOGRAPHIC MAPPING OF THE CUTANEOUS MICROCIRCULATION USING 2 OUTPUTS OF LASER-DOPPLER FLOWMETRY - FLUX AND THE CONCENTRATION OF MOVING BLOOD-CELLS [J].
BRAVERMAN, IM ;
SCHECHNER, JS ;
SILVERMAN, DG ;
KEHYEN, A .
MICROVASCULAR RESEARCH, 1992, 44 (01) :33-48
[8]   Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy [J].
Busch, David R. ;
Balu, Ramani ;
Baker, Wesley B. ;
Guo, Wensheng ;
He, Lian ;
Diop, Mamadou ;
Milej, Daniel ;
Kavuri, Venkaiah ;
Amendolia, Olivia ;
St Lawrence, Keith ;
Yodh, Arjun G. ;
Kofke, W. Andrew .
NEUROCRITICAL CARE, 2019, 30 (01) :72-80
[9]   Cellular and Ionic Mechanisms of Arterial Vasomotion [J].
Cole, William C. ;
Gordon, Grant R. ;
Braun, Andrew P. .
SMOOTH MUSCLE SPONTANEOUS ACTIVITY: PHYSIOLOGICAL AND PATHOLOGICAL MODULATION, 2019, 1124 :297-312
[10]   What is new in microcirculation and tissue oxygenation monitoring? [J].
de Keijzer, Ilonka N. ;
Massari, Dario ;
Sahinovic, Marko ;
Flick, Moritz ;
Vos, Jaap Jan ;
Scheeren, Thomas W. L. .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2022, 36 (02) :291-299