Transcriptomic and metabolomic analyses reveal that lignin biosynthesis contributes to bayberry (Myrica rubra) defence responses against twig blight

被引:4
作者
Guo, Junning [1 ,2 ]
Li, Gang [1 ]
Ijaz, Munazza [2 ]
Hafeez, Rahila [2 ]
Ibrahim, Ezzeldin [2 ]
Ahmed, Temoor [2 ,3 ,4 ]
Qi, Xingjiang [1 ]
Zhang, Shuwen [1 ]
Ali, Hayssam M. [5 ]
Li, Bin [2 ]
Ren, Haiying [1 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Hort, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Treats Qual & S, Hangzhou 310021, Peoples R China
[2] Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol & Breeding, Minist Agr,Key Lab Mol Biol Crop Pathogens & Insec, Hangzhou 310058, Peoples R China
[3] Xianghu Lab, Hangzhou 311231, Peoples R China
[4] Middle East Univ, MEU Res Unit, Amman, Jordan
[5] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh 11451, Saudi Arabia
来源
PLANT STRESS | 2024年 / 13卷
关键词
Myrica rubra; Twig blight; Transcriptome; Metabolome; Defence responses; Lignin biosynthesis; PLANT-GROWTH; DISEASE; CASCADES;
D O I
10.1016/j.stress.2024.100514
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Twig blight is a highly destructive disease primarily caused by Pestalotiopsis versicolor. It affects bayberry (Myrica rubra) cultivation and production. However, the molecular and regulatory defence responses to twig blight remain unclear. We inoculated a susceptible cultivar bayberry variety with P. versicolor XJ27 and carefully profiled the disease development. The bayberry disease index increased sharply following inoculation. We conducted integrative transcriptomic and metabolomic analyses to track key genes and secondary metabolomic changes in susceptible bayberry leaves. Herein, we identified 9588 differentially expressed genes (DEGs) and 748 differentially accumulated metabolites (DAMs). Of these, seven structural genes and seven metabolites (including L-phenylalanine, coniferin, p-coumaric acid, cinnamaldehyde, eleutheroside B, ferulaldehyde, and isoeugenol) related to lignin biosynthesis markedly increased following pathogen infection. These observations suggest that lignin biosynthesis may facilitate bayberry defence responses to twig blight. Quantitative real-time PCR analysis further confirmed the higher expression levels of pivotal lignin synthesis genes in infected leaves. In addition, higher foliar lignin levels and increased xylem formation in infected leaves provided evidence that lignin synthesis was enhanced during bayberry response to twig blight. These findings not only provide effective management strategies for bayberry twig blight but also promote the breeding of high-quality resistant varieties.
引用
收藏
页数:12
相关论文
共 55 条
[1]   Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus [J].
Bagniewska-Zadworna, Agnieszka ;
Barakat, Abdelali ;
Lakomy, Piotr ;
Smolinski, Dariusz J. ;
Zadworny, Marcin .
PLANT SCIENCE, 2014, 229 :111-121
[2]  
Barros J, 2016, NAT PLANTS, V2, DOI [10.1038/nplants.2016.50, 10.1038/NPLANTS.2016.50]
[3]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[4]   KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis [J].
Bu, Dechao ;
Luo, Haitao ;
Huo, Peipei ;
Wang, Zhihao ;
Zhang, Shan ;
He, Zihao ;
Wu, Yang ;
Zhao, Lianhe ;
Liu, Jingjia ;
Guo, Jincheng ;
Fang, Shuangsang ;
Cao, Wanchen ;
Yi, Lan ;
Zhao, Yi ;
Kong, Lei .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W317-W325
[5]   Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus [J].
Cao, Yanru ;
Yan, Xingying ;
Ran, Shuyao ;
Ralph, John ;
Smith, Rebecca A. ;
Chen, Xueping ;
Qu, Cunmin ;
Li, Jiana ;
Liu, Liezhao .
PLANT CELL AND ENVIRONMENT, 2022, 45 (01) :248-261
[6]   Comparative analysis of Fusarium crown rot resistance in synthetic hexaploid wheats and their parental genotypes [J].
Chen, Ying ;
Wang, Yunpeng ;
Guan, Fangnian ;
Long, Li ;
Wang, Yuqi ;
Li, Hao ;
Deng, Mei ;
Zhang, Yazhou ;
Pu, Zhien ;
Li, Wei ;
Jiang, Qiantao ;
Wang, Jirui ;
Wei, Yuming ;
Ma, Jian ;
Xu, Qiang ;
Kang, Houyang ;
Qi, Pengfei ;
Yuan, Zhongwei ;
Zhang, Lianquan ;
Liu, Dengcai ;
Zheng, Youliang ;
Chen, Guoyue ;
Jiang, Yunfeng .
BMC GENOMICS, 2023, 24 (01)
[7]   Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J].
Dong, Nai-Qian ;
Lin, Hong-Xuan .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (01) :180-209
[8]  
Fraser Christopher M, 2011, Arabidopsis Book, V9, pe0152, DOI 10.1199/tab.0152
[9]   Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance [J].
Hernandez-Blanco, Camilo ;
Feng, Dong Xin ;
Hu, Jian ;
Sanchez-Vallet, Andrea ;
Deslandes, Laurent ;
Llorente, Francisco ;
Berrocal-Lobo, Marta ;
Keller, Harald ;
Barlet, Xavier ;
Sanchez-Rodriguez, Clara ;
Anderson, Lisa K. ;
Somerville, Shauna ;
Marco, Yves ;
Molina, Antonio .
PLANT CELL, 2007, 19 (03) :890-903
[10]   A Pathogen-Responsive Gene Cluster for Highly Modified Fatty Acids in Tomato [J].
Jeon, Ju Eun ;
Kim, Jung-Gun ;
Fischer, Curt R. ;
Mehta, Niraj ;
Dufour-Schroif, Cosima ;
Wemmer, Kimberly ;
Mudgett, Mary Beth ;
Sattely, Elizabeth .
CELL, 2020, 180 (01) :176-+