Metabolic network connectivity disturbances in Parkinson's disease: a novel imaging biomarker

被引:3
作者
Chen, Bei [1 ]
Chen, Xiran [2 ]
Peng, Liling [3 ,4 ]
Liu, Shiqi [2 ]
Tang, Yongxiang [1 ]
Gao, Xin [3 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Nucl Med, 172,Tongzipo Rd, Changsha 410008, Hunan, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Xuefu Rd 66, Chongqing 400074, Peoples R China
[3] Shanghai Universal Med Imaging Diag Ctr, Dept PET MR, Guilin Rd 406, Shanghai 200233, Peoples R China
[4] Hubei Prov Key Lab Mol Imaging, Jiefang Rd 1277, Wuhan 430022, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Parkinson's disease; Jensen-Shannon divergence similarity estimation; FDG-PET; metabolic brain network; random forest; RESTING-STATE; ORGANIZATION; FMRI;
D O I
10.1093/cercor/bhae355
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like F-18-fluorodeoxyglucose positron emission tomography (F-18-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes F-18-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Efficiency and cost of economical brain functional networks [J].
Achard, Sophie ;
Bullmore, Edward T. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :174-183
[2]   Detection of visual and frontoparietal network perfusion deficits in Parkinson's disease dementia [J].
Azamat, Sena ;
Arslan, Dilek Betul ;
Erdogdu, Emel ;
Kicik, Ani ;
Cengiz, Sevim ;
Eryurek, Kardelen ;
Tufekcioglu, Zeynep ;
Bilgic, Basar ;
Hanagasi, Hasmet ;
Demiralp, Tamer ;
Gurvit, Hakan ;
Ozturk-Isik, Esin .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 144
[3]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[4]   Pharmacologically modulated fMRI -: cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients [J].
Buhmann, C ;
Glauche, V ;
Stürenburg, HJ ;
Oechsner, M ;
Weiller, C ;
Büchel, C .
BRAIN, 2003, 126 :451-461
[5]   Altered morphological connectivity mediated white matter hyperintensity-related cognitive impairment [J].
Chen, Haifeng ;
Xu, Jingxian ;
Lv, Weiping ;
Hu, Zheqi ;
Ke, Zhihong ;
Qin, Ruomeng ;
Chen, Ying ;
Xu, Yun .
BRAIN RESEARCH BULLETIN, 2023, 202
[6]   Glucose and lactate metabolism during brain activation [J].
Dienel, GA ;
Hertz, L .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (05) :824-838
[7]   Parkinson's disease and translational research [J].
Dinter, Elisabeth ;
Saridaki, Theodora ;
Diederichs, Leonie ;
Reichmann, Heinz ;
Falkenburger, Bjoern H. .
TRANSLATIONAL NEURODEGENERATION, 2020, 9 (01)
[8]   ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R [J].
Duong, Tarn .
JOURNAL OF STATISTICAL SOFTWARE, 2007, 21 (07) :1-16
[9]   Metabolic brain networks in neurodegenerative disorders: a functional imaging approach [J].
Eidelberg, David .
TRENDS IN NEUROSCIENCES, 2009, 32 (10) :548-557
[10]   A Novel Individual Metabolic Brain Network for 18F-FDG PET Imaging [J].
Huang, Sheng-Yao ;
Hsu, Jung-Lung ;
Lin, Kun-Ju ;
Hsiao, Ing-Tsung .
FRONTIERS IN NEUROSCIENCE, 2020, 14