Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides

被引:2
|
作者
Medina-Ortiz, David [1 ,2 ]
Contreras, Seba [3 ]
Fernandez, Diego [1 ]
Soto-Garcia, Nicole [1 ]
Moya, Ivan [1 ,4 ]
Cabas-Mora, Gabriel [1 ]
Olivera-Nappa, Alvaro [2 ,5 ]
机构
[1] Univ Magallanes, Dept Ingn Comp, Punta Arenas 6210005, Chile
[2] Univ Chile, Ctr Biotechnol & Bioengn, CeBiB, Santiago 8370456, Chile
[3] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[4] Univ Magallanes, Dept Ingn Quim, Punta Arenas 6210005, Chile
[5] Univ Chile, Dept Ingn Quim Biotecnol & Mat, Santiago 8370456, Chile
关键词
antimicrobial peptides; machine learning; protein language models; generative learning; peptide discovery; peptide design; PREDICTION; CLASSIFICATION; DESIGN;
D O I
10.3390/ijms25168851
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Machine Learning in the Rational Design of Antimicrobial Peptides
    Rondon-Villarreal, Paola
    Sierra, Daniel A.
    Torres, Rodrigo
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2014, 10 (03) : 183 - 190
  • [2] Machine learning in the rational design of antimicrobial peptides
    Rondón-Villarreal, Paola (nydia.rondon@correo.uis.edu.co), 1600, Bentham Science Publishers (10): : 183 - 190
  • [3] Do deep learning models make a difference in the identification of antimicrobial peptides?
    Garcia-Jacas, Cesar R.
    Pinacho-Castellanos, Sergio A.
    Garcia-Gonzalez, Luis A.
    Brizuela, Carlos A.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [4] What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
    Lee, Ernest Y.
    Lee, Michelle W.
    Fulan, Benjamin M.
    Ferguson, Andrew L.
    Wong, Gerard C. L.
    INTERFACE FOCUS, 2017, 7 (06)
  • [5] Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides
    Bhangu, Sukhvir Kaur
    Welch, Nicholas
    Lewis, Morgan
    Li, Fanyi
    Gardner, Brint
    Thissen, Helmut
    Kowalczyk, Wioleta
    SMALL SCIENCE, 2025,
  • [6] An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies
    Lin, Yuan
    Cai, Yinyin
    Liu, Juan
    Lin, Chen
    Liu, Xiangrong
    BMC BIOINFORMATICS, 2019, 20 (Suppl 8)
  • [7] Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models
    Lobo, Fernando
    Gonzalez, Maily Selena
    Boto, Alicia
    de la Lastra, Jose Manuel Perez
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [8] Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides
    Xu, Jing
    Li, Fuyi
    Leier, Andre
    Xiang, Dongxu
    Shen, Hsin-Hui
    Lago, Tatiana T. Marquez
    Li, Jian
    Yu, Dong-Jun
    Song, Jiangning
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [9] Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
    Yan, Jielu
    Cai, Jianxiu
    Zhang, Bob
    Wang, Yapeng
    Wong, Derek F.
    Siu, Shirley W., I
    ANTIBIOTICS-BASEL, 2022, 11 (10):
  • [10] Deep Learning for Antimicrobial Peptides: Computational Models and Databases
    Zhou, Xiangrun
    Liu, Guixia
    Cao, Shuyuan
    Lv, Ji
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1708 - 1717