Long timescale molecular dynamics simulations of carboxylic acid-modified anatase TiO2(101)-water interfaces using ab-initio deep neural network potentials

被引:3
作者
Raman, Abhinav S. [1 ]
Selloni, Annabella [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Carboxylic acids; Deep neural network; Molecular dynamics; Anatase TiO2; FORMIC-ACID; SURFACE SCIENCE; TIO2; PHOTOCATALYSIS; ADSORPTION; DISSOCIATION; TIO2(110);
D O I
10.1016/j.susc.2024.122595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carboxylic acid-modified anatase TiO2-water interfaces are widely relevant, yet understanding of their molecular scale structure is limited. To help improve this understanding, we here construct a deep neural network potential (DP) that accurately represents the potential energy surface of the formic (FA) and acetic acid (AA)-covered anatase TiO2(101) (A101) interfaces with water predicted by Density Functional Theory (DFT) with the SCAN exchange-correlation functional. Long time-scale (ns) Molecular Dynamics simulations employing such DP provide insight into the hydration structure at the interface, showing how the water density profile and radial distribution functions depend on the coverage and adsorption configurations of the acids. The developed model sets the stage for estimating the adsorption energetics of these small carboxylic acids on the A101 surface in an aqueous environment.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J].
Andrade, Marcos F. Calegari ;
Ko, Hsin-Yu ;
Zhang, Linfeng ;
Car, Roberto ;
Selloni, Annabella .
CHEMICAL SCIENCE, 2020, 11 (09) :2335-2341
[2]  
Ba J, 2014, ACS SYM SER
[3]   High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution [J].
Balajka, Jan ;
Hines, Melissa A. ;
DeBenedetti, William J. I. ;
Komora, Mojmir ;
Pavelec, Jiri ;
Schmid, Michael ;
Diebold, Ulrike .
SCIENCE, 2018, 361 (6404) :786-788
[4]   Machine learning potentials for extended systems: a perspective [J].
Behler, Joerg ;
Csanyi, Gabor .
EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (07)
[5]   Titanium Dioxide Photocatalysis in Atmospheric Chemistry [J].
Chen, Haihan ;
Nanayakkara, Charith E. ;
Grassian, Vicki H. .
CHEMICAL REVIEWS, 2012, 112 (11) :5919-5948
[6]   Atomic-Scale Understanding of Catalyst Activation: Carboxylic Acid Solutions, but Not the Acid Itself, Increase the Reactivity of Anatase (001) Faceted Nanocatalysts [J].
DeBenedetti, William J. I. ;
Skibinski, Erik S. ;
Jing, Dapeng ;
Song, Anqi ;
Hines, Melissa A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (08) :4307-4314
[7]   Machine Learning Interatomic Potentials as Emerging Tools for Materials Science [J].
Deringer, Volker L. ;
Caro, Miguel A. ;
Csanyi, Gabor .
ADVANCED MATERIALS, 2019, 31 (46)
[8]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[9]   Machine-learned potentials for next-generation matter simulations [J].
Friederich, Pascal ;
Hase, Florian ;
Proppe, Jonny ;
Aspuru-Guzik, Alan .
NATURE MATERIALS, 2021, 20 (06) :750-761
[10]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582