A proposal for a Riemannian face space and application to atypical vs. typical face similarities

被引:0
|
作者
Townsend, James T. [1 ]
Fu, Hao-Lun [2 ]
Hsieh, Cheng-Ju [3 ]
Yang, Cheng-Ta [2 ,4 ]
机构
[1] Indiana Univ Bloomington, Dept Psychol & Brain Sci, Indiana, PA USA
[2] Natl Cheng Kung Univ, Dept Psychol, Tainan, Taiwan
[3] Texas Tech Univ, Dept Chem Engn, Lubbock, TX USA
[4] Taipei Med Univ, Grad Inst Hlth & Biotechnol Law, Taipei City, Taiwan
关键词
Atypicality bias; Face perception; Face recognition; Face space; Non-Euclidean geometry; Riemannian face manifolds; Topology; MODELS; PERCEPTION; DISTINCTIVENESS; RECOGNITION; FAMILIARITY; MEMORABILITY;
D O I
10.1016/j.jmp.2024.102870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two intriguing papers of the late 1990's and early 2000s by J. Tanaka and colleagues put forth the hypothesis that a repository of face memories can be viewed as a vector space where points in the space represent faces and each of these is surrounded by an attractor field. This hypothesis broadens the thesis of T. Valentine that face space is constituted of feature vectors in a finite dimensional vector space (e.g., Valentine, 2001). The attractor fields in the atypical part of face space are broader and stronger than those in typical face regions. This notion makes the substantiated prediction that a morphed midway face between a typical and atypical parent will be perceptually more similar to the atypical face. We propose an alternative interpretation that takes a more standard geometrical approach but also departs from the popular types of metrics assumed in almost all multidimensional scaling studies. Rather we propose a theoretical structure based on our earlier investigations of non-Euclidean and especially, Riemannian Face Manifolds (e.g., Townsend, Solomon, & Spencer-Smith, 2001). We assert that this approach avoids some of the issues involved in the gradient theme by working directly with the type of metric inherently associated with the face space. Our approach emphasizes a shift towards a greater emphasis on non-Euclidean geometries, especially Riemannian manifolds, integrating these geometric concepts with processing-oriented modeling. We note that while fields like probability theory, stochastic process theory, and mathematical statistics are commonly studied in mathematical psychology, there is less focus on areas like topology, non-Euclidean geometry, and functional analysis. Therefore, both to elevate comprehension as well as to propagate the latter topics as critical for our present and future enterprises, our exposition moves forward in a highly tutorial fashion, and we embed the material in its proper historical context.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Face detection mechanisms: Nature vs. nurture
    Kobylkov, Dmitry
    Vallortigara, Giorgio
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [2] Newborn preference for a new face vs. a previously seen communicative or motionless face
    Cecchini, Marco
    Baroni, Eleonora
    Di Vito, Cinzia
    Piccolo, Federica
    Lai, Carlo
    INFANT BEHAVIOR & DEVELOPMENT, 2011, 34 (03) : 424 - 433
  • [3] Eye movement strategies in face ethnicity categorization vs. face identification tasks
    Chakravarthula, Puneeth N.
    Tsank, Yuliy
    Eckstein, Miguel P.
    VISION RESEARCH, 2021, 186 : 59 - 70
  • [4] The effects of information type (features vs. configuration) and location (eyes vs. mouth) on the development of face perception
    Tanaka, James W.
    Quim, Paul C.
    Xu, Buyun
    Maynard, Kim
    Huxtable, Natalie
    Lee, Kang
    Pascalis, Olivier
    JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY, 2014, 124 : 36 - 49
  • [5] Typical and Atypical Development of Functional Connectivity in the Face Network
    Song, Yiying
    Zhu, Qi
    Li, Jingguang
    Wang, Xu
    Liu, Jia
    JOURNAL OF NEUROSCIENCE, 2015, 35 (43) : 14624 - 14635
  • [6] Face recognition: Sparse Representation vs. Deep Learning
    Alskeini, Neamah H.
    Kien Nguyen Thanh
    Chandran, Vinod
    Boles, Wageeh
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING (ICGSP 2018), 2018, : 31 - 37
  • [7] Eigenface vs. Spectroface: A comparison on the face recognition problems
    El-Arief, Taha I.
    Nagaty, Khaled A.
    El-Sayed, Ahmed S.
    PROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PATTERN RECOGNITION, AND APPLICATIONS, 2007, : 321 - +
  • [8] Development of holistic vs. featural processing in face recognition
    Nakabayashi, Kazuyo
    Liu, Chang Hong
    FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [9] Depth vs. intensity: Which is more important for face recognition?
    Xu, CH
    Wang, YH
    Tan, TN
    Quan, L
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 342 - 345
  • [10] Automated Action Units Vs. Expert Raters: Face off
    Dhamija, Svati
    Boult, Terrance E.
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 259 - 268