Pressure-robust approximation of the incompressible Navier-Stokes equations in a rotating frame of reference

被引:0
作者
Demir, Medine [1 ]
John, Volker [1 ,2 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
关键词
Navier-Stokes equations in rotating frame of reference; Coriolis force; Scott-Vogelius pairs of finite element spaces; Pressure-robust error estimate; EULERIAN COMPUTING METHOD; GRAD-DIV STABILIZATION; FINITE-ELEMENT METHODS; CORIOLIS-FORCE; FLOW; ALGORITHM; UNIFORM;
D O I
10.1007/s10543-024-01037-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A pressure-robust space discretization of the incompressible Navier-Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, H-1 -conforming mixed finite element methods like Scott-Vogelius pairs. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples support the theoretical results.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Modified fully discretized projection method for the incompressible Navier-Stokes equations
    Guo, Daniel X.
    APPLIED NUMERICAL MATHEMATICS, 2015, 96 : 187 - 202
  • [42] A segregated-implicit scheme for solving the incompressible Navier-Stokes equations
    Kao, Po-Hao
    Yang, Ruey-Jen
    COMPUTERS & FLUIDS, 2007, 36 (06) : 1159 - 1161
  • [43] A note on the accuracy of the generalized-α scheme for the incompressible Navier-Stokes equations
    Liu, Ju
    Lan, Ingrid S.
    Tikenogullari, Oguz Z.
    Marsden, Alison L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (02) : 638 - 651
  • [44] The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
    Yan, Yan
    Yan, Weiping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (02) : 209 - 234
  • [45] A dimension split method for the incompressible Navier-Stokes equations in three dimensions
    Chen, H.
    Li, K.
    Wang, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (05) : 409 - 435
  • [46] Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations
    Giorgiani, Giorgio
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    COMPUTERS & FLUIDS, 2014, 98 : 196 - 208
  • [47] An energy stable coupling procedure for the compressible and incompressible Navier-Stokes equations
    Ghasem, Fatemeh
    Nordstrom, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 280 - 302
  • [48] Discrete unified gas kinetic scheme for incompressible Navier-Stokes equations
    Shang, Jinlong
    Chai, Zhenhua
    Chen, Xinmeng
    Shi, Baochang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 45 - 60
  • [49] Immersed boundary method for the incompressible Reynolds Averaged Navier-Stokes equations
    Troldborg, Niels
    Sorensen, Niels N.
    Zahle, Frederik
    COMPUTERS & FLUIDS, 2022, 237
  • [50] Global Large Solutions and Incompressible Limit for the Compressible Navier-Stokes Equations
    Chen, Zhi-Min
    Zhai, Xiaoping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (02)