Pressure-robust approximation of the incompressible Navier-Stokes equations in a rotating frame of reference

被引:0
|
作者
Demir, Medine [1 ]
John, Volker [1 ,2 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
关键词
Navier-Stokes equations in rotating frame of reference; Coriolis force; Scott-Vogelius pairs of finite element spaces; Pressure-robust error estimate; EULERIAN COMPUTING METHOD; GRAD-DIV STABILIZATION; FINITE-ELEMENT METHODS; CORIOLIS-FORCE; FLOW; ALGORITHM; UNIFORM;
D O I
10.1007/s10543-024-01037-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A pressure-robust space discretization of the incompressible Navier-Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, H-1 -conforming mixed finite element methods like Scott-Vogelius pairs. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples support the theoretical results.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Family of convergent numerical schemes for the incompressible Navier-Stokes equations
    Eymard, Robert
    Feron, Pierre
    Guichard, Cindy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 196 - 218
  • [22] A fast and accurate method to solve the incompressible Navier-Stokes equations
    Rodolfo Idelsohn, Sergio
    Marcelo Nigro, Norberto
    Marcelo Gimenez, Juan
    Rossi, Riccardo
    Marcelo Marti, Julio
    ENGINEERING COMPUTATIONS, 2013, 30 (02) : 197 - 222
  • [23] An improved formulation of the incompressible Navier-Stokes equations with variable viscosity
    Huettig, Christian
    Tosi, Nicola
    Moore, William B.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2013, 220 : 11 - 18
  • [24] Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations
    Charnyi, Sergey
    Heister, Timo
    Olshanskii, Maxim A.
    Rebholz, Leo G.
    APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 220 - 233
  • [25] On preconditioned iterative methods for unsteady incompressible Navier-Stokes equations
    Ran, Yu-Hong
    Wang, Jun-Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 477 - 485
  • [26] A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Kim, Yongsik
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) : 1737 - 1751
  • [27] Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations
    Cheung, Siu Wun
    Chung, Eric
    Kim, Hyea Hyun
    Qian, Yue
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 251 - 266
  • [28] Open and traction boundary conditions for the incompressible Navier-Stokes equations
    Liu, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) : 7250 - 7267
  • [29] Deconvolution-based stabilization of the incompressible Navier-Stokes equations
    Viguerie, Alex
    Veneziani, Alessandro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 391 : 226 - 242
  • [30] Adaptive time step control for the incompressible Navier-Stokes equations
    John, Volker
    Rang, Joachim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 514 - 524