A physics-informed neural network framework for multi-physics coupling microfluidic problems

被引:2
|
作者
Sun, Runze [1 ,2 ]
Jeong, Hyogu [2 ]
Zhao, Jiachen [2 ]
Gou, Yixing [1 ]
Sauret, Emilie [2 ]
Li, Zirui [1 ]
Gu, Yuantong [2 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin, Peoples R China
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
基金
中国国家自然科学基金;
关键词
Microfluidic; Electrokinetic; Physics informed neural network; Deep learning; Electroosmotic flow; MG2+/LI+ RATIO BRINES; CONCENTRATION POLARIZATION; NUMERICAL-SIMULATION; FLOW; EXTRACTION;
D O I
10.1016/j.compfluid.2024.106421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microfluidic systems have various scientific and industrial applications, providing a powerful means to manipulate fluids and particles on a small scale. As a crucial method to underlying mechanisms and guiding the design of microfluidic devices, traditional numerical methods such as the Finite Element Method (FEM) simulating microfluidic systems are limited by the computational cost and mesh generating of resolving the smaller spatiotemporal features. Recently, a Physics-informed neural network (PINN) was introduced as a powerful numerical tool for solving partial differential equations (PDEs). PINN simplifies discretizing computational domains, ensuring accurate results and significantly improving computational efficiency after training. Therefore, we propose a PINN-based modeling framework to solve the governing equations of electrokinetic microfluidic systems. The neural networks, designed to respect the governing physics law such as Nernst-Planck, Poisson, and Navier-Stokes (NPN) equations defined by PDEs, are trained to approximate accurate solutions without requiring any labeled data. Several typical electrokinetic problems, such as Electromigration, Ion concentration polarization (ICP), and Electroosmotic flow (EOF), were investigated in this study. Notably, the findings demonstrate the exceptional capacity of the PINN framework to deliver high-precision outcomes for highly coupled multi-physics problems, particularly highlighted by the EOF case. When using 20 x 10 sample points to train the model (the same mesh nodes used for FEM), the relative error of EOF velocity from the PINN is similar to 0.02 %, whereas the relative error of the FEM is similar to 1.23 %. In addition, PINNs demonstrate excellent interpolation capability, the relative error of the EOF velocity decreases slightly at the interpolation points compared to training points, approximately 0.0001 %. More importantly, in simulating strongly nonlinear problems such as the ICP case, PINNs exhibit a unique advantage as they can provide accurate solutions with sparse sample points, whereas FEM fails to produce correct physical results using the same mesh nodes. Although the training time for PINN (100-200 min) is higher than the FEM computational time, the ability of PINN to achieve high accuracy results on sparse sample points, strong capability to fit nonlinear problems highlights its potential for reducing computational resources. We also demonstrate the ability of PINN to solve inverse problems in microfluidic systems and use transfer learning to accelerate PINN training for various species parameter settings. The numerical results demonstrate that the PINN model shows promising advantages in achieving high-accuracy solutions, modeling strong nolinear problems, strong interpolation capability, and inferring unknown parameters in simulating multi-physics coupling microfluidic systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189
  • [22] A framework of parallel physics-informed neural network with Laplace transform for well testing interpretation
    Fan, Dongyan
    Yang, Can
    Sun, Hai
    Yao, Jun
    Zhang, Lei
    Jia, Cunqi
    Fu, Shuaishi
    Sang, Qian
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [23] Physics-informed neural networks for parameter learning of wildfire spreading
    Vogiatzoglou, K.
    Papadimitriou, C.
    Bontozoglou, V.
    Ampountolas, K.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [24] Physics-informed Neural Implicit Flow neural network for parametric PDEs
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    NEURAL NETWORKS, 2025, 185
  • [25] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [26] An enhanced hybrid adaptive physics-informed neural network for forward and inverse PDE problems
    Luo, Kuang
    Liao, Shaolin
    Guan, Zhong
    Liu, Baiquan
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [27] A generic physics-informed neural network-based framework for reliability assessment of multi-state systems
    Zhou, Taotao
    Zhang, Xiaoge
    Droguett, Enrique Lopez
    Mosleh, Ali
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 229
  • [28] Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation
    Lopez, Z. Sanchez
    Cortes, G. Berenice Diaz
    REVISTA MEXICANA DE FISICA, 2025, 71 (02) : 1 - 18
  • [29] Investigation on aortic hemodynamics based on physics-informed neural network
    Du, Meiyuan
    Zhang, Chi
    Xie, Sheng
    Pu, Fan
    Zhang, Da
    Li, Deyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11545 - 11567
  • [30] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264