Multiple integral formulas for weighted zeta moments: the case of the sixth moment

被引:1
作者
Darses, Sebastien [1 ]
Najnudel, Joseph [2 ]
机构
[1] Marseille Univ, Univ Montreal, Ctr Natl Rech Sci Aix, IRL CRM CNRS, I2M, Marseille, France
[2] Univ Bristol, Sch Math, Bristol, England
关键词
Weighted zeta moments; Sixth moment; Riemann zeta function; Fourier transform; Eisenstein series; LOWER BOUNDS; PERIOD FUNCTIONS; RIEMANN;
D O I
10.1007/s11139-024-00944-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove exact formulas for weighted 2kth moments of the Riemann zeta function for all integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 1$$\end{document} in terms of the analytic continuation of an auto-correlation function. This latter enjoys three functional equations. One of them, following from a fundamental lemma of Bettin and Conrey (Algebra Number Theory 7(1):215-242, 2013), yields to a new formula for the sixth moment, which can be seen as a generalization of formulas by Titchmarsh (Proc Lond Math Soc 27(2):137-150, 1927) for the second and fourth moments. A basic and powerful tool is a special Fourier transform unveiled by Ramanujan (Quart J Math 46:253-260, 1915).
引用
收藏
页码:1421 / 1447
页数:27
相关论文
共 45 条
[1]   Polynomial approximations in a generalized Nyman-Beurling criterion [J].
Alouges, Francois ;
Darses, Sebastien ;
Hillion, Erwan .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03) :767-785
[2]  
Arguin L.-P., ARXIV
[3]   Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line [J].
Arguin, Louis-Pierre ;
Belius, David ;
Bourgade, Paul ;
Radziwill, Maksym ;
Soundararajan, Kannan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) :500-535
[4]  
Atkinson FV, 1941, P LOND MATH SOC, V47, P174
[5]   Reciprocity theorems for Bettin-Conrey sums [J].
Auli, Juan S. ;
Bayad, Abdelmejid ;
Beck, Matthias .
ACTA ARITHMETICA, 2017, 181 (04) :297-319
[6]  
BALASUBRAMANIAN R, 1985, J REINE ANGEW MATH, V357, P161
[7]   A Reciprocity Formula for a Cotangent Sum [J].
Bettin, Sandro ;
Conrey, John Brian .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (24) :5709-5726
[8]   The mean square of the product of the Riemann zeta-function with Dirichlet polynomials [J].
Bettin, Sandro ;
Chandee, Vorrapan ;
Radziwill, Maksym .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 729 :51-79
[9]   Period functions and cotangent sums [J].
Bettin, Sandro ;
Conrey, Brian .
ALGEBRA & NUMBER THEORY, 2013, 7 (01) :215-242
[10]  
Bez-Duarte L., 2000, MATH, V149, P130